Abstract:
A system, method, and computer storage configured for determining period-ending positions of multiple parts movable by select actuation of corresponding active materials. The operations include receiving, from a work-source sensor, work-source input indicating a distance moved by the work source and a direction of the movement, and determining, based on the work-source input and a first and second status histories, corresponding to a first and a second part, respectively, first and second distances travelled by the parts, respectively. Operations also include calculating, based on the first and second distances determined and first and second period-starting positions, corresponding to the first and second parts, respectively, first and second period-ending positions for the first and second parts, respectively.
Abstract:
The present invention relates to sliding door systems, apparatus and methods of using and making the same. Specifically, the present invention relates to systems for opening horizontally sliding doors on a structure, such as, for example, a barn, warehouse, hangar, or other building or structure. Moreover, the present invention relates to apparatuses for guiding horizontally-sliding doors over an opening. In addition, systems and methods of making and using the same are provided.
Abstract:
A system for use with a emergency exit door, comprising: a door opener including a stationary actuator with a movable distal arm for pushing the door open; a door strike mountable to a door frame having an opening to receive a latch of the emergency exit door, the electric door strike including a gate having a locked condition and a release condition; a controller connected to the door opener and the door strike; a remote activator having a triggered condition, which provides a signal to the controller when the remote activator is triggered, to unlock the gate and then the door opener, to open the emergency exit door.
Abstract:
In an aspect, a swing door actuation system is provided for moving a door about a vertical axis between open closed positions relative to a vehicle body. The system includes a housing connectable to one of the swing door and the vehicle body, an extensible member that moves relative to the housing, and connects to the other of the swing door and the vehicle body, a motor connected to a gear train that is non-backdrivable, and a normally engaged clutch. The motor is operatively connected to a clutch input end through the gear train. The output end is operatively connected to the extensible member. The clutch is disengageable to disconnect the motor from the extensible member. The clutch has a slip torque that is sufficiently high to prevent movement of the door when the door is exposed to less than a selected external torque and the motor is stopped.
Abstract:
A door module of a vehicle door is provided. The door module comprising a carrier plate, a drive unit arranged on the carrier plate for driving a power-operated adjustment device of the door module, and a decoupling means arranged on the carrier plate for attenuating an acoustic excitation of the carrier plate in operation of the drive unit. The decoupling means is formed by at least one slot, which partly separates a portion carrying the drive unit from another portion of the carrier plate and extends around the drive unit or around a fastening point of the drive unit on the carrier plate in a circumferential direction, and at least one web, which connects the portion carrying the drive unit with the other portion of the carrier plate.
Abstract:
A vehicle door control method includes operating a vehicle door handle to disengage a door lock device of a vehicle door, beginning to count time upon the operation of the door handle, if the vehicle door has moved from a fully closed position after the door lock device has been disengaged, operating a power assist mechanism to move the vehicle door in an opening direction, if the vehicle door has not moved from the fully closed position, operating the power assist mechanism to urge the vehicle door to move in the opening direction, if the vehicle door moves while being urged by the power assist mechanism, the operation of the power assist mechanism is continued to move the vehicle door in the opening direction, if the vehicle door does not move while being urged by the power assist mechanism, the power assist mechanism is operated in a direction which urges the vehicle door to move to the fully closed position.
Abstract:
A door closing mechanism which includes a hydraulic rotation damper, having a closed cylinder cavity within a cylinder barrel, a rotational damper shaft which extends into the cylinder cavity, a piston dividing the cylinder cavity into a first side above the piston and a second side below the piston, a one-way valve allowing fluid flow from said first side to said second side of the cylinder cavity, and a fluid passage between said first and second sides of the cylinder cavity, with a flow restrictor, in particular in the form of a needle valve, adjustable through an orifice in the cylinder barrel, wherein said second side of the cylinder cavity and said orifice are at opposite sides of the flow restrictor.
Abstract:
The present invention relates to an apparatus for a door drive, in particular for roller doors, sectional doors or the like, having a door movement element, in particular a door shaft, for the opening and closing of a door and a connection means arranged at the door movement element. In accordance with the invention, the door drive includes at least two electric motors of which one is indirectly/directly fixedly connected to the connection means arranged at the door movement element and all further electric motors are arranged radially movably around the door movement element and are connected thereto via the arranged connection means.
Abstract:
An ejection device for a furniture component moveably housed in or against a furniture body. The ejection device includes a swivellably housed lever. A first castor is attached to a free end of the lever, and a second castor is attached to the lever at a distance from the free end.
Abstract:
An actuator system for use in selectively engaging an input to an output. The actuator system includes an input sub-system having an input component configured to connect to an input element which is in turn connected to a work source. The actuator system also includes an output sub-system being connectable to the input sub-system for receiving work from the work source via the input sub-system. The actuator system further includes an actuator sub-system having an active material and an actuating component. The actuator sub-system is configured so that the active material, when activated, causes the actuating component to move from a first state to a second state to disengage the input and output sub-systems. In another embodiment, the present technology includes a pinch-protection system that determines whether a present value for a work-source physical characteristic exceeds a running average by at least a preset offset value.