Abstract:
Provided through the present application are a method and an apparatus for use in a radio communication system, which supports carrier aggregation and carries out communication in subframe units. More specifically, user equipment operating in a first type carrier for receiving from a base station, a first piece of control information, which is related to the first type carrier and a second type carrier that support the carrier aggregation, can measure a radio signal to carry out radio resource management with respect to the first type carrier by using a first reference signal, which is included in the first type carrier, and/or a second reference signal, which is included in the second type carrier.
Abstract:
The present invention relates to a method for transmitting a signal of a transmitting side in a wireless communication system that supports multiple antennas. More particularly, the method comprises the steps of: receiving, from a receiving side, feedback information for transmitting the signal of the transmitting side; and transmitting a signal to which a precoding matrix (W) is applied on the basis of the feedback information, wherein the precoding matrix (W) is expressed as a multiplication of two precoding matrices (W1 and W2), W1 is set to correspond to a plurality of antenna groups configured according to the feedback information, and W2 is configured such that the signal corresponding to the plurality of antenna groups can be transmitted in a mutual orthogonal way.
Abstract:
A method of operating a relay station in a wireless communication system is provided. The method includes operating in a first mode comprising a first sub-mode and a second sub-mode, in the first sub-mode a first downlink and a first uplink between a base station and the relay station being simultaneously activated, in the second sub-mode a second downlink and a second uplink between the relay station and a mobile station being simultaneously activated, and operating in a second mode comprising a third sub-mode and a fourth sub-mode, in the third sub-mode the first downlink and the second uplink being simultaneously activated, in the fourth sub-mode the first uplink and the second downlink being simultaneously activated.
Abstract:
A method of sizing bundled resource blocks (RBs) having at least one user equipment (UE)-specific demodulation reference signal in an orthogonal frequency division multiplexing (OFDM) system is disclosed. According to one embodiment, the method includes: receiving configuration information related to at least one UE-specific demodulation reference signal; receiving a plurality of resource blocks (RBs) from a network, wherein the plurality of resource blocks comprises the at least one UE-specific demodulation reference signal, at least one cell-specific demodulation reference signal or data, wherein a number of the plurality of RBs is dependent on a size of a system bandwidth, the size of the system bandwidth corresponding to one of four size ranges; and processing at least one of the received plurality of RBs by bundling the plurality of RBs into RB bundles, wherein the size of each RB bundle is based on the one of the four size ranges.
Abstract:
A method of sizing bundled resource blocks (RBs) having at least one user equipment (UE)-specific demodulation reference signal in an orthogonal frequency division multiplexing (OFDM) system is disclosed. According to one embodiment, the method includes: receiving configuration information related to at least one UE-specific demodulation reference signal; receiving a plurality of resource blocks (RBs) from a network, wherein the plurality of resource blocks comprises the at least one UE-specific demodulation reference signal, at least one cell-specific demodulation reference signal or data, wherein a number of the plurality of RBs is dependent on a size of a system bandwidth, the size of the system bandwidth corresponding to one of four size ranges; and processing at least one of the received plurality of RBs by bundling the plurality of RBs into RB bundles, wherein the size of each RB bundle is based on the one of the four size ranges.
Abstract:
A method for and apparatus for supporting scheduling groups based on devices characteristics in a wireless communication system is provided. A wireless device receives a group identification(ID) to monitor a physical downlink control channel (PDCCH) for Machine Type Communication (MTC), receives the PDCCH with the group ID at a predetermined subframe, and configures a physical downlink shared chancel (PDSCH) and a physical uplink shared chancel (PUSCH) shared with MTC UEs by the PDCCH of grant. And, more efficient and accurate scheduling with lower complexity and reduction of control overhead, for multi-UEs is provided in this invention.
Abstract:
A method for and apparatus for supporting a carrier aggregation group in a wireless communication system supporting multiple carriers is provided. A wireless device receives a RRC configuration signal including one or more serving cells from a macro cell and a RRC configuration signal including one or more serving cells from a small cell, and configures at least two carrier aggregation group (CAG)s based on the RRC configuration signal each. And, this invention includes that cell planning for multi-CCs is provided more accurately and efficiently.
Abstract:
The present invention determines a PUCCH resource based on which serving cell ACK/NACK information is related to, when a user device set as a plurality of serving cells transmits the ACK/NACK information. Moreover, if a PUCCH transmission time matches with a PUSCH transmission time, the present invention does not piggy back ACK/NACK information to PUSCH but transmits the ACK/NACK information through PUCCH.
Abstract:
In the present invention, a demodulation reference signal is transmitted using a plurality of settings in which demodulation reference signals occupy different positions in at least a density or time-frequency resource region of the demodulation reference signals. A base station can transmit, to the user device, information indicating a setting related to a downlink signal or a setting related to an uplink signal from among the plurality of settings, and the user device can receive the demodulation reference signal with the downlink signal or transmit the demodulation reference signal With the uplink signal according to the indicated setting.
Abstract:
One embodiment of the present specification discloses an uplink transmission method in a multi-cell environment in which a single uplink resource is shared. The method may comprise: receiving control information that configures an uplink control channel and an uplink shared channel so that the uplink control channel and the uplink shared channel are not simultaneously transmitted on the same one uplink subframe, wherein the single uplink resource is shared by a first cell and a second cell; selecting any one of the uplink control channel and the uplink shared channel if a first Scheduling Request (SR) for the first cell and Uplink Control Information (UCI) for the second cell are requested to be simultaneously transmitted on the same subframe through the uplink control channel and the uplink shared channel, respectively; sending the selected channel on the uplink subframe.