Abstract:
A printing system for printing a pattern onto a liquid crystal display device includes a clichnull having a plurality of grooves defining a pattern, a blade for filling a material into each of the plurality of grooves of the clichnull, a clean chamber for cleaning the clichnull, and an actuator disposed within an interior of tile clean chamber upon which the clichnull is placed.
Abstract:
The present invention discloses a method and apparatus of driving a liquid crystal display device that prevents a deterioration of picture quality. More specifically, the method and apparatus determines whether the adjacent modulated data are equal to each other, and replaces least significant bit data with a desired value if the adjacent modulated data are equal to each other.
Abstract:
The specification and drawings describe and show embodiments of the present invention in the form of a liquid crystal display with a 2-port data polarity inverter. More specifically, the liquid crystal display includes a liquid crystal polarity inversion driver determining whether a polarity of a liquid crystal is inverted and inverting the polarity of the liquid crystal in accordance with the determined result, a first data polarity inversion driver determining whether a first data transition is occurred in first data inverting the polarity of the first data in accordance with the determined result, and a second data polarity inversion driver determining whether a second data transition is occurred and inverting the polarity of the second data in accordance with the determined result.
Abstract:
A method of forming polycrystalline silicon for a liquid crystal display device is disclosed in the present invention. The method includes forming an amorphous silicon layer on a substrate, forming a plurality of catalytic metal clusters on the amorphous silicon layer, forming a catalytic metal gettering layer adjacent to the amorphous silicon layer, and heat-treating the substrate including the amorphous silicon layer to transform the amorphous silicon layer into a polycrystalline silicon layer, wherein unreacted catalytic metal clusters migrate to the catalytic metal gettering layer in a direction perpendicular to the substrate.
Abstract:
The present invention discloses a liquid crystal display device with a light shutter to eliminate a motion-blurring phenomenon generated upon displaying a moving picture, thereby improving a display quality. In the liquid crystal display device, a light shutter is provided on a liquid crystal display panel for displaying an image to transmit or shut off the light from the liquid crystal display panel.
Abstract:
A method for measuring an image sticking defect in a liquid crystal display device includes the steps of grounding a liquid crystal cell, the liquid crystal cell includes an alignment layer, applying a first alternating current voltage to the liquid crystal cell, measuring a first capacitance of the liquid crystal cell, applying an electrical stress to the liquid crystal cell, measuring a second capacitance of the liquid crystal cell, and calculating a capacitance difference between the first capacitance and the second capacitance.
Abstract:
An electro-luminescence device includes a transparent substrate; a plurality of pixel areas including a plurality of scanning lines and a plurality of data lines formed on the transparent substrate; a plurality of pixel electrodes formed on the plurality of pixel areas; an electro-luminescent layer formed over the plurality of pixel electrodes; a metal electrode formed on the electro-luminescent layer; a seal cover plate for sealing the electro-luminescent layer; a sealant for adhering the seal cover plate to the transparent substrate; and a heat-exhausting layer formed on the metal electrode.
Abstract:
An LCD device includes a plurality of data pads; an LCD panel defined by a plurality of pad regions; a first shorting bar connected to odd numbered data pads among the plurality of data pads; a second shorting bar connected to even numbered data pads among the plurality of data pads; and a test pad formed in a predetermined portion of a pad region among the plurality of pad regions to apply a signal voltage for on/off testing to the first shorting bar and the second shorting bar.
Abstract:
A method of crystallizing amorphous silicon includes forming an amorphous silicon layer over a substrate, forming a plurality of metal clusters on the amorphous silicon layer, and simultaneously applying a thermal treatment, an electric field, and a magnetic field to crystallize the amorphous silicon layer.
Abstract:
The present invention discloses a method of crystallizing amorphous silicon using a metal catalyst. More specifically, the method includes forming an amorphous silicon layer over a substrate, forming a plurality of metal clusters on the amorphous silicon film, forming a heat insulating layer on the amorphous silicon layer including the metal clusters, disposing a pair of electrodes on the heat insulating layer, simultaneously applying a thermal treatment and a voltage to crystallize the amorphous silicon, and removing the heat insulating layer including the electrodes from the substrate.