摘要:
A method for controlling the temperature of an exothermic reaction with simultaneous production of steam is based on the use of heat exchangers (5a) crossed by a recirculation liquid along an inner path extended between the inlet opening for the recirculation liquid and an outlet opening (5f), the recirculation liquid coming from a steam drum (10) for the separation of the produced steam and being fed to said inlet opening along a path external to the heat exchangers, the produced steam being integrated in the form of an additional liquid flow which is mixed at least in part with the recirculation liquid flowing along the external path.
摘要:
The present invention concerns an isothermal reactor (1) comprising a substantially cylindrical shell (2), at least one catalytic bed (10) supported in the shell (2) and at least one heat exchange unit (13) supported in the bed (10), the heat exchange unit (13) comprising a plurality of exchangers (14) substantially box shaped, of essentially elongated rectangular and flattened structure, each of the exchangers (14) having opposite long sides (14a) parallel to the cylindrical shell (2) axis and opposite short sides (14b, 14c) extended perpendicularly with respect to the shell axis and comprising furthermore an inner chamber (18) through which a heat exchange operating fluid in intended to flow, wherein at least one exchanger (14) of such at least one heat exchange unit (13) is internally equipped with a plurality of separation baffles (19) extended from a short side (14b or 14c) of the exchanger to the opposite short side (14c or 14b) and in a predetermined spaced relationship with respect to the latter, defining in the inner chamber (18) a substantially zigzag fluid path having alternating ascending and descending portions.
摘要:
A method for controlling the temperature of an exothermic reaction and the simultaneous production of steam is based upon the use of heat exchangers (5a) crossed by boiling water along an internal path, extending between an inlet opening (5h) for boiling water and an outlet opening (5f).
摘要:
Pseudo-isothermal chemical reactor for heterogeneous chemical reactions comprising a substantially cylindrical shell closed at the opposite ends by respective bottoms, upper and lower, a reaction zone containing at least one catalytic bed and at least one tubular heat exchanger, intended to be crossed, along a predetermined direction, by an operating heat exchange fluid and embedded in said catalytic bed.
摘要:
A method for the production of plate type heat exchangers (10) comprising the operative steps of: juxtaposing a couple of metal plates (12, 14), welding each other said juxtaposed plates (12, 14) at least perimetrically, defining an inner chamber (16) between said metal plates (12, 14), intended to be crossed by an operating heat exchange fluid, said operative welding step of the juxtaposed plates (12, 14) being carried out by supplying heat directly to each of said metal plates (12, 14).
摘要:
Pseudo-isothermal radial chemical reactor for catalytic reactions, comprising a substantially cylindrical shell closed at the opposite ends by respective base plates, comprising a reaction zone in which a respective catalytic bed is supported and a plurality of heat exchangers placed in said reaction zone.
摘要:
A heat exchange unit for axial and radial pseudo-isothermal reactors which comprise a substantially cylindrical shell (2) closed at the opposite ends by base plates (3, 4), a reaction zone (6) containing a catalytic bed and at least one heat exchanger (11) of the type with a plate having a variable section along the direction of the flow of operating heat exchange fluid
摘要:
Method for carrying out in continuous, under so-called pseudo-isothermal conditions and in a predetermined reaction environment, such as a catalytic bed, a selected chemical reaction, comprising the steps of providing in the reaction environment at least one heat exchanger fed with a first flow of a heat exchange operating fluid at a respective predetermined inlet temperature, the fluid passing through at least one heat exchanger according to a respective inlet/outlet path, which method also provides feeding into at least one heat exchanger and at one or more intermediate positions of said path, a second flow of operating fluid having a respective predetermined inlet temperature.
摘要:
Heat exchange unit for pseudo-isothermal reactors including a substantially cylindrical shell (2) closed at its opposite ends by respective bottoms (3, 4), at least one thereof is provided with at least one manhole opening (5) of predetermined dimensions, a reaction zone (6) inside the shell (2) in order to contain a catalytic bed, comprising at least two modular and assembly heat exchangers (11), having predetermined cross dimensions smaller than those of the manhole opening (5), each heat exchanger (11) comprising at least one heat exchange element (12).
摘要:
The present invention relates to method for mixing gaseous flows at different temperatures. In particular, the present invention relates to heterogeneous exothermic synthesis reactors of the type including a plurality of superimposed catalytic beds wherein at least one of the beds is provided with a gas permeable wall for outlet of a hot gas flow. This method includes the steps of supplying gaseous reagents to at least one bed; reacting the gaseous reagents in that bed; and collecting a hot reaction gas flow leaving the gas permeable wall in an air space defined between the bed and a baffle extending below and parallel thereto. Further steps require directing the hot gas flow in the air space radially outward to an annular opening of constant thickness defined between the baffle and a side wall supporting the bed, wherein the ratio of the width of the annular opening and the thickness of the air space being between 0.2 and 1. Then, hot gas flow is discharged from air space through the annular opening and is subjected to a pressure drop of predetermined magnitude so as to uniform its flow rate. Finally, a cooling gas flow is injected into hot gas flow thus obtained, wherein cooling gas flow is provided at predetermined velocity from a perforated distributor supported below baffle, which is at a predetermined distance from the annular opening.