摘要:
[PROBLEM] Provided is a method for producing an SOI wafer which the method can prevent occurrence of thermal strain, detachment, crack and the like attributed to a difference in thermal expansion coefficients between the insulating substrate and the SOI layer and also improve the uniformity of film thickness of the SOI layer.[MEANS FOR SOLVING THE PROBLEM] Provided is a method for producing an SOI wafer comprising steps of: performing a surface activation treatment on at least one of a surface of an insulator wafer and a hydrogen ion-implanted surface of a single crystal silicon wafer having a hydrogen ion-implanted layer; bonding the hydrogen ion-implanted surface to the surface of the insulator wafer to obtain bonded wafers; heating the bonded wafers at a first temperature; grinding and/or etching a surface of a single crystal silicon wafer side of the bonded wafers thus heated so as to thin the single crystal silicon wafer of the bonded wafers; heating the bonded wafers thus ground and/or etched at a second temperature which is higher the first temperature; and performing detachment at the hydrogen ion-implanted layer by applying a mechanical impact to the hydrogen ion-implanted layer of the bonded wafers thus heated at the second temperature.
摘要:
A method for minimizing thickness variation of a substrate in an anneal step and achieving the smoothing of the surface of the substrate. Specifically provided is a method for treating the surface of a SOI substrate, including the steps of treating the surface of the SOI substrate by the PACE method using a plasma or the GCIB method using a gas cluster ion beam and subjecting the treated substrate to a heat treatment in argon atmosphere or an inert gas atmosphere containing 4 vol % or less of hydrogen so that the treated SOI substrate can be annealed.
摘要:
A hydrogen ion-implanted layer is formed on the surface side of a first substrate which is a single-crystal silicon substrate. At least one of the surface of a second substrate, which is a transparent insulating substrate, and the surface of the first substrate is subjected to surface activation treatment, and the two substrates are bonded together. The bonded substrate composed of the single-crystal Si substrate and the transparent insulating substrate thus obtained is mounted on a susceptor and is placed under an infrared lamp. Light having a wave number range including an Si—H bond absorption band is irradiated at the bonded substrate for a predetermined length of time to break the Si—H bonds localized within a “microbubble layer” in the hydrogen ion-implanted layer, thereby separating a silicon thin film layer.
摘要:
An optical waveguide apparatus having a very simple structure that can modulate a signal light guided through an optical waveguide is provided. A photoresist 13 is applied to an upper side of an SOI film 12, a photoresist mask 14 is formed, and the SOI film in a region that is not covered with the photoresist mask 14 is removed by etching to obtain an optical waveguide 15 having a single-crystal silicon core. Further, a light emitting device capable of irradiating the single-crystal silicon core with a light having a wavelength of 1.1 μm or below is provided on a back surface side of a quartz substrate 20 to provide an optical waveguide apparatus. When the light emitting device 30 does not apply a light, the light guided through the optical waveguide 15 is guided as it is. However, when the light emitting device 30 applies a light to form each pair of an electron and a hole in the irradiated region 16, the light guided through the optical waveguide 15 is absorbed by the pair of an electron and a hole, thereby enabling switching (modulation) for turning ON/OFF an optical signal depending on presence/absence (ON or OFF) of application of the light from the light emitting device 30.
摘要:
A nitride-based semiconductor crystal and a second substrate are bonded together. In this state, impact is applied externally to separate the low-dislocation density region of the nitride-based semiconductor crystal along the hydrogen ion-implanted layer, thereby transferring (peeling off) the surface layer part of the low-dislocation density region onto the second substrate. At this time, the lower layer part of the low-dislocation density region stays on the first substrate without being transferred onto the second substrate. The second substrate onto which the surface layer part of the low-dislocation density region has been transferred is defined as a semiconductor substrate available by the manufacturing method of the present invention, and the first substrate on which the lower layer part of the low-dislocation density region stays is reused as a substrate for epitaxial growth.
摘要:
Provided is a method for producing an SOI substrate comprising a transparent insulating substrate and a silicon film formed on a first major surface of the insulating substrate wherein a second major surface of the insulating substrate which is opposite to the major surface is roughened, the method suppressing the generation of metal impurities and particles in a simple and easy way. More specifically, provided is a method for producing an SOI substrate comprising a transparent insulating substrate, a silicon film formed on a first major surface of the transparent insulating substrate, and a roughened second major surface, which is opposite to the first major surface, the method comprising steps of: providing the transparent insulating substrate, mirror surface-processing at least the first major surface of the transparent insulating substrate, forming a silicon film on the first major surface of the transparent insulating substrate, and laser-processing the second major surface of the transparent insulating substrate so as to roughen the second major surface by using a laser.
摘要:
A plasma treatment or an ozone treatment is applied to the respective bonding surfaces of the single-crystal Si substrate in which the ion-implanted layer has been formed and the quartz substrate, and the substrates are bonded together. Then, a force of impact is applied to the bonded substrate to peel off a silicon thin film from the bulk portion of single-crystal silicon along the hydrogen ion-implanted layer, thereby obtaining an SOI substrate having an SOI layer on the quartz substrate. A concave portion, such as a hole or a micro-flow passage, is formed on a surface of the quartz substrate of the SOI substrate thus obtained, so that processes required for a DNA chip or a microfluidic chip are applied. A silicon semiconductor element for the analysis/evaluation of a sample attached/held to this concave portion is formed in the SOI layer.
摘要:
An optical waveguide apparatus having a very simple structure that can modulate a signal light guided through an optical waveguide is provided. A photoresist 13 is applied to an upper side of an SOI film 12, a photoresist mask 14 is formed, and the SOI film in a region that is not covered with the photoresist mask 14 is removed by etching to obtain an optical waveguide 15 having a single-crystal silicon core. Further, a light emitting device capable of irradiating the single-crystal silicon core with a light having a wavelength of 1.1 μm or below is provided on a back surface side of a quartz substrate 20 to provide an optical waveguide apparatus. When the light emitting device 30 does not apply a light, the light guided through the optical waveguide 15 is guided as it is. However, when the light emitting device 30 applies a light to form each pair of an electron and a hole in the irradiated region 16, the light guided through the optical waveguide 15 is absorbed by the pair of an electron and a hole, thereby enabling switching (modulation) for turning ON/OFF an optical signal depending on presence/absence (ON or OFF) of application of the light from the light emitting device 30.
摘要:
A method for manufacturing a single crystal silicon solar cell includes the steps of implanting either hydrogen ions or rare-gas ions into a single crystal silicon substrate; bringing the single crystal silicon substrate in close contact with a transparent insulator substrate via a transparent adhesive, with the ion-implanted surface being a bonding surface; curing the transparent adhesive; mechanically delaminating the single crystal silicon substrate to form a single crystal silicon layer; forming a plurality of diffusion areas of a second conductivity type in the delaminated surface side of the single crystal silicon layer, and causing a plurality of areas of a first conductivity type and the plurality of areas of the second conductivity type to be present in the delaminated surface of the single crystal silicon layer; forming each of a plurality of individual electrodes on each one of the plurality of areas of the first conductivity type and on each one of the plurality of areas of the second conductivity type in the single crystal silicon layer; forming a collector electrode for the plurality of individual electrodes on the plurality of areas of the first conductivity type, and a collector electrode for the plurality of individual electrodes on the plurality of areas of the second conductivity type; and forming a light-reflecting film.
摘要:
When manufacturing a bonded substrate using an insulator substrate as a handle wafer, there is provided a method for manufacturing a bonded substrate which can be readily removed after carried and after mounted by roughening a back surface of the bonded substrate (corresponding to a back surface of the insulator substrate) and additionally whose front surface can be easily identified like a process of a silicon semiconductor wafer in case of the bonded substrate using a transparent insulator substrate as a handle wafer.There is provided a method for manufacturing a bonded substrate in which an insulator substrate is used as a handle wafer and a donor wafer is bonded to a front surface of the insulator substrate, the method comprises at least that a sandblast treatment is performed with respect to a back surface of the insulator substrate.