Abstract:
A pneumatic tire including a circumferential tread, two spaced apart beads, and sidewalls connecting said beads and tread, wherein said tire sidewall contains at least one internal annular sidewall insert including at least two annular segments, the at least two annular segments including first and second adjacent annular segments; wherein said first and second annular segments are disposed with an interface therebetween; wherein each of the at least two annular segments includes a rubber composition comprising at least one diene based rubber and at least one vulcanization modifier selected from the group consisting of α,ω-bis(N,N′-dihydrocarbylthiocarbamamoyldithio)alkanes, bismaleimides, and biscitraconimides; and wherein the concentration of vulcanization modifier in the first annular segment is less than the concentration of vulcanization modifier in the second annular segment.
Abstract:
Disclosed is a pneumatic run-flat tire. The tire has at least one carcass reinforcing ply, at least one pair of sidewall wedge inserts, and a belt reinforcing structure. The belt reinforcing structure is formed from at least a pair of cross cord belt reinforcing plies. Located radially outward of the carcass reinforcing ply is a porous elastomeric layer. The porous elastomeric layer has a porosity level of 20 to 80%, preferably 40–70%, of the total volume of the porous elastomeric layer.
Abstract:
A pneumatic tire has a sidewall rubber insert axially inward of at least one carcass ply. Such insert may, for example, be an apex extending radially outward from the bead core region of the tire into the tire sidewall. Alternatively, it may be positioned higher in the sidewall portion of the tire and away from the bead core. Such insert is a rubber composition containing a dispersion of an ultra high molecular weight polyethylene and a dispersion of a starch composite.
Abstract:
A pneumatic tire including a circumferential tread, two spaced apart beads, and sidewalls connecting said beads and tread, wherein said tire sidewall contains at least one internal annular sidewall insert including at least two annular segments, the at least two annular segments including first and second adjacent annular segments; wherein said first and second annular segments are disposed with an interface therebetween; wherein each of the at least two annular segments includes a rubber composition comprising at least one diene based rubber and at least one vulcanization modifier selected from the group consisting of α,ω-bis(N,N′-dihydrocarbylthiocarbamamoyldithio)alkanes, bismaleimides, and biscitraconimides; and wherein the concentration of vulcanization modifier in the first annular segment is less than the concentration of vulcanization modifier in the second annular segment.
Abstract:
A pneumatic radial ply tire includes a pair of beads, a single carcass ply, a tread, and a pair of sidewalls. The pair of beads each has an associated chaffer. The single carcass ply is folded about each bead so as to define a main body portion and a turnup portion associated with each bead. The tread is disposed radially outward from the single carcass ply. The tread has shoulder portions disposed at axial outer edges of the tread. The pair of sidewalls extends radially outward from each chaffer to a location adjacent each shoulder portion. Each sidewall is disposed axially outward of the single carcass ply. Each sidewall includes a first outer layer extending from the chaffer to the shoulder portion and a second inner layer extending from the chaffer to the shoulder portion. The second inner layer is disposed entirely between the single carcass ply and first outer layer. The second inner layer comprises a foamed structure of a rubber composition having a density ranging from 0.1 to 1.0 g/cm3.
Abstract:
A tire having a tire tread, the tread having a groove void radially inward of a wearable tread portion; and a degradable tread filler disposed in and substantially filling the groove void, the void being exposed upon wear of the wearable tread portion and dislocation of the degradable tread filler.
Abstract:
An expandable bladder for shaping a pneumatic tire is provided. The bladder in an unmounted, relaxed state has a shaped body having a pair of opposed annular beads, said body further comprising a central portion, sidewall portions, and shoulder portions interposed between the central portion and the sidewall portions, wherein the body is defined by an outer contour surface and an inner contour surface, wherein the central portion has gauge which increases to a maximum value axially inward of the shoulder portion, and wherein the bladder gauge in the shoulder is less than the maximum value, and wherein the bladder gauge increases from the shoulder to the bead.
Abstract:
A self-supporting pneumatic tire, capable of continued operation during under-inflation conditions, has at least one insert located in each tire sidewall. Forming the interior surface of the self-supporting tire is a stiffening layer of material having characteristics similar to that of the insert. In the tread region of the tire, and radially inward of the innermost carcass layer, and possibly in the interior bead region of the tire, is a partial inner liner layer of the bromobutyl rubber.
Abstract:
The invention relates to a rubber composition which contains starch/plasticizer composite, precipitated silica and carbon black reinforcement together with a coupling agent wherein the coupling agent is an organosilane polysulfide having an average of from about 2 to about 2.6 connecting sulfur atoms in its polysulfidic bridge. The invention provides for a chemical reaction between a coupling agent and silica which is substantially decoupled from a reaction between a coupling agent and starch/plasticizer to form a filler reinforcement network in situ within the elastomer host followed by a subsequent phase mixing of the carbon black therewith. The invention further relates to the resulting rubber composition and articles of manufacture, including tires, having at least one component comprised of said rubber composition.
Abstract:
The invention relates to a rubber composition which contains starch/plasticizer composite, precipitated silica and carbon black reinforcement together with a coupling agent wherein the coupling agent is an organosilane polysulfide having an average of from about 2 to about 2.6 connecting sulfur atoms in its polysulfidic bridge. The invention provides for a chemical reaction between a coupling agent and silica which is substantially decoupled from a reaction between a coupling agent and starch/plasticizer to form a filler reinforcement network in situ within the elastomer host followed by a subsequent phase mixing of the carbon black therewith. The invention further relates to the resulting rubber composition and articles of manufacture, including tires, having at least one component comprised of said rubber composition.