Abstract:
Provided is an approach for active control of cross currents flowing among multiple paralleled converters. Control of cross currents is achieved by using at least one proportional-integral (PI) controller and at least one resonant controller to target several selected dominant harmonics with infinite gains to ensure elimination of targeted harmonic cross currents in steady state. The cross currents are decomposed by into (1) common mode and differential mode components or (2) current phase domain components and each component is suppressed to a value approximately near zero using the controller. Also provided is a device comprises instructions, that, when executed by a processor, cause the processor to perform operations, which regulate and suppress cross current within a power system.
Abstract:
Provided is an approach for active control of cross currents flowing among multiple paralleled converters. Control of cross currents is achieved by using at least one proportional-integral (PI) controller and at least one resonant controller to target several selected dominant harmonics with infinite gains to ensure elimination of targeted harmonic cross currents in steady state. The cross currents are decomposed by into (1) common mode and differential mode components or (2) current phase domain components and each component is suppressed to a value approximately near zero using the controller. Also provided is a device comprises instructions, that, when executed by a processor, cause the processor to perform operations, which regulate and suppress cross current within a power system.
Abstract:
A rotor for a high-speed, high-power electric motor includes, according to the rotor axis, a magnetic mass surrounded on both sides by short-circuit rings, and crossed at several notches by electrical conductors connecting the short-circuit rings to form a squirrel cage. Each electrical conductor is formed of a single bar having a trapezoidal section over its entire length.
Abstract:
A device includes a transformer configured to supply a pre-charge voltage to a capacitor and a converter configured for coupling to the transformer and responsive to an increasing modulation index. The modulation index increases for a time quanta after the capacitor becomes substantially fully charged and the pre-charge voltage is substantially constant during the time quanta.
Abstract:
A reactive energy compensator (10) comprising: an input DC voltage (Vc) bus (13) capable of providing reactive energy; an inverter (18) connected to the DC voltage bus (13) and including controllable electronic switches (34) capable of converting the input DC voltage (Vc) into an intermediate alternating voltage, a device (22) for controlling the electronic switches, regulation means (22) for determining a value of a target active current circulating between the inverter and the network, capable of regulating the input direct current voltage (Vc) relatively to a set reference value; the device for controlling the switches, determining control signals according to the value of said target active current, determined from the error between the reference value and the square of the DC voltage of the bus via a transfer function, the definition of which varies according to the current value of said DC voltage.
Abstract:
A power converter arrangement is described. The power converter includes a dc link and a power converter. The dc link is operably connected between a generator, or other power source, that provides an output voltage in use and a dc network. The power converter includes an inverter connected across the dc link in parallel with the generator, an isolation transformer having a primary tap changer and a secondary tap changer, and a rectifier. The rectifier has ac terminals connected to the secondary tap changer, a first dc terminal connected to the dc link, and a second dc terminal connected to the dc network. The dc terminal voltage of the rectifier is therefore summated with the output voltage of the generator to provide a converter output voltage.
Abstract:
A power distribution system including first and second ac busbars connected to ac generators. A first active rectifier/inverter has ac input terminals electrically connected to the first ac busbar. A second active rectifier/inverter has ac input terminals electrically connected to the second ac busbar. A first dc interface is electrically connected to dc output terminals of the first active rectifier/inverter and a second dc interface is electrically connected to dc output terminals of the second active rectifier/inverter. The dc interfaces include reverse blocking means. A third active rectifier/inverter operates as a drive and has dc input terminals electrically connected in the parallel to dc output terminals of the first and second dc interfaces by means of an interposing dc busbar. An electric motor, that can optionally form part of a marine thruster T1, is electrically connected to ac output terminals of the third active rectifier/inverter.
Abstract:
A method of manufacturing a coil support member in which a thermosetting or thermoplastic material is introduced into a mould cavity and hardened, wherein one or more components are positioned within the mould cavity during the manufacturing process before the thermosetting or thermoplastic material is introduced, the components are then embedded in the thermosetting or thermoplastic material and form an integral part of the coil support member, and one or more functional filler materials are added to the thermosetting or thermoplastic material to improve the thermal matching between the integral components and the thermosetting or thermoplastic material.
Abstract:
An axial flux machine comprising a rotor mounted about an axis of rotation and having two axial faces. A first stator ring is positioned on the rotor adjacent to a first axial face, to define an air gap, between the first stator ring and first axial face. The first stator ring is formed by stator ring segments, each having a radially inner and outer edge. A second stator ring is positioned on another side of the rotor, adjacent to the second axial face, to define an air gap between the second stator ring and second axial face. The second stator ring is, also, formed by stator ring segments, each having a radially inner and outer edge and corresponding to a first stator ring segment. The stator ring segments are deflectable in unison in response to axial deflection of the rotor, to maintain the air gaps, due to link elements.
Abstract:
A circuit includes first and second electronic switches, first and second excitation circuits, and first and second inductors. The first and second electronic switches are electrically coupled in series. The first and second excitation circuits are used for respectively controlling the first and second electronic switches to be turned on and turned off and are configured to synchronously switch the first and second electronic switches. The first inductor is electrically coupled between the first excitation circuit and the first electronic switch, for transmitting the switch control signal of the first excitation circuit to the first electronic switch. The second inductor is electrically coupled between the second excitation circuit and the second electronic switch, for transmitting the switch control signal of the second excitation circuit to the second electronic switch.