Abstract:
This invention relates to MRAM technology and new variations on MRAM array architecture to incorporate certain advantages from both cross-point and 1T-1MTJ architectures. The fast read-time and higher signal-to-noise ratio of the 1T-1MTJ architecture and the higher packing density of the cross-point architecture are both exploited by combining certain characteristics of these layouts. A single access transistor 16 is used to read multiple MRAM cells, which can be stacked vertically above one another in a plurality of MRAM array layers arranged in a “Z” axis direction.
Abstract:
This invention relates to MRAM technology and new variations on MRAM array architecture to incorporate certain advantages from both cross-point and 1T-1MTJ architectures. The fast read-time and higher signal-to-noise ratio of the 1T-1MTJ architecture and the higher packing density of the cross-point architecture are both exploited by combining certain characteristics of these layouts. A single access transistor 16 is used to read multiple MRAM cells, which can be stacked vertically above one another in a plurality of MRAM array layers arranged in a “Z” axis direction.
Abstract:
The invention includes a construction comprising an MRAM device between a pair of conductive lines. Each of the conductive lines can generate a magnetic field encompassing at least a portion of the MRAM device. Each of the conductive lines is surrounded on three sides by magnetic material to concentrate the magnetic fields generated by the conductive lines at the MRAM device. The invention also includes a method of forming an assembly containing MRAM devices. A plurality of MRAM devices are formed over a substrate. An electrically conductive material is formed over the MRAM devices, and patterned into a plurality of lines. The lines are in a one-to-one correspondence with the MRAM devices and are spaced from one another. After the conductive material is patterned into lines, a magnetic material is formed to extend over the lines and within spaces between the lines.
Abstract:
MRAM structures employ the magnetic properties of layered magnetic and non-magnetic materials to read memory storage logic states. Improvements in switching reliability may be achieved by altering the shape of the layered magnetic stack structure. Forming recessed regions with sloped interior walls in an ILD layer prior to depositing the layered magnetic stack structure produces a significant advantage over the prior art by allowing a CMP process to be used to define the magnetic bit shapes. The sloped interior walls of the recessed regions, which is singular to the present invention, provide a unique formation and shaping of the magnetic stack structure, which may reduce the magnetic coupling effect between magnetic layers of the magnetic stack structure.
Abstract:
A variable resistance memory element and method of forming the same. The memory element includes a substrate supporting a bottom electrode having a small bottom contact area. A variable resistance material is formed over the bottom electrodes such that the variable resistance material has a surface that is in electrical communication with the bottom electrode and a top electrode is formed over the variable resistance material. The small bottom electrode contact area reduces the reset current requirement which in turn reduces the write transistor size for each bit.
Abstract:
A variable resistance memory element and method of forming the same. The memory element includes a substrate supporting a bottom electrode having a small bottom contact area. A variable resistance material is formed over the bottom electrodes such that the variable resistance material has a surface that is in electrical communication with the bottom electrode and a top electrode is formed over the variable resistance material. The small bottom electrode contact area reduces the reset current requirement which in turn reduces the write transistor size for each bit.
Abstract:
A variable resistance memory element and method of forming the same. The memory element includes a substrate supporting a bottom electrode having a small bottom contact area. A variable resistance material is formed over the bottom electrodes such that the variable resistance material has a surface that is in electrical communication with the bottom electrode and a top electrode is formed over the variable resistance material. The small bottom electrode contact area reduces the reset current requirement which in turn reduces the write transistor size for each bit.
Abstract:
This invention relates to memory technology and new variations on memory array architecture to incorporate certain advantages from both cross-point and 1T-1Cell architectures. The fast read-time and higher signal-to-noise ratio of the 1T-1Cell architecture and the higher packing density of the cross-point architecture are both exploited by combining certain characteristics of these layouts. A single access transistor 16 is used to read multiple memory cells, which can be stacked vertically above one another in a plurality of memory array layers arranged in a “Z” axis direction.
Abstract:
The invention includes methods of fabricating integrated circuitry. In one implementation, at least two different elevation conductive metal lines are formed relative to a substrate. Then, interconnecting vias are formed in a common masking step between, a) respective of the at least two different elevation conductive metal lines, and b) respective conductive nodes. Interconnecting conductive metal is provided within the interconnecting vias. Other aspects and implementations are contemplated.
Abstract:
This invention relates to an MRAM array architecture which incorporates certain advantages from both cross-point and 1T-1MTJ architectures during reading operations. The fast read-time and higher signal to noise ratio of the 1T-1MTJ architecture and the higher packing density of the cross-point architecture are both exploited by using a single access transistor to control the reading of multiple stacked columns of MRAM cells each column being provided in a respective stacked memory layer.