摘要:
A method of generating a non-reversible state at a bitcell having a first magnetic tunnel junction (MTJ) and a second MTJ includes applying a program voltage to the first MTJ of the bitcell without applying the program voltage to the second MTJ of the bitcell. A memory device includes a bitcell having a first MTJ and a second MTJ and programming circuitry configured to generate a non-reversible state at the bitcell by applying a program signal to a selected one of the first MTJ and the second MTJ of the bitcell.
摘要:
Asymmetric switching is defined for magnetic bit cell elements. A magnetic bit cell for memory and other devices includes a transistor coupled to an MTJ structure. A bit line is coupled at one terminal of the bit cell to the MTJ structure. At another terminal of the bit cell, a source line is coupled to the source/drain terminal of the transistor. The bit line is driven by a bit line driver that provides a first voltage. The source line is driven by a source line driver that provides a second voltage. The second voltage is larger than the first voltage. The switching characteristics of the bit cell and MTJ structure are improved and made more reliable by one or a combination of applying the higher second voltage to the source line and/or reducing the overall parasitic resistance in the magnetic bit cell element.
摘要:
A system and method to select a reference cell is disclosed. In a particular embodiment, a method is disclosed that includes receiving an address corresponding to a bit cell within a first bank of a memory. The method also includes accessing a second reference cell of a second bank of the memory in response to a first reference cell in the first bank being indicated as bypassed.
摘要:
Embodiments of the present invention generally provide techniques and apparatus for altering the functionality of a multi-chip package (MCP) without requiring entire replacement of the MCP. The MCP may be designed with a top package substrate designed to interface with an add-on package that, when sensed by the MCP, alters the functionality of the MCP.
摘要:
Embodiments of the invention generally provide a system, method and memory device for accessing memory. One embodiment includes synchronization circuitry configured to determine timing skew between a first memory device and a second memory device, and introduce a delta delay to at least one of the first memory device and the second memory device to adjust the timing skew.
摘要:
Embodiments of the invention generally provide an apparatus and technique for sharing an internally generated voltage between devices of a multi-chip package (MCP). The internally generated voltage may be shared via a conductive structure that electrically couples the devices and carries the internally generated voltage.
摘要:
Embodiments of the invention generally provide a system, method, and memory device for accessing memory. In one embodiment, a first memory device includes command decoding logic configured to decode commands issued to the first memory device and a second memory device, while command decoding logic of the second memory device is bypassed.
摘要:
Embodiments of the present invention generally provide techniques and apparatus for altering the functionality of a multi-chip package (MCP) without requiring entire replacement of the MCP. The MCP may be designed with a top package substrate designed to interface with an add-on package that, when sensed by the MCP, alters the functionality of the MCP.
摘要:
A duty cycle corrector comprising a first circuit and a second circuit. The first circuit is configured to receive a clock signal and an inverted clock signal and to obtain a delay signal that indicates a time difference between transitions of the clock signal and the inverted clock signal. The second circuit is configured to receive the clock signal and the inverted clock signal and the delay signal and to delay the clock signal based on the delay signal to provide an output clock signal having substantially a 50% duty cycle.
摘要:
An oscillator circuit includes a capacitor device, a current source for supplying a current to the capacitor device, a reference voltage, and a control circuit. The reference voltage is a first input to a comparator. An output of the capacitor device and an output of the current source are a second input to the comparator. The control circuit resets the oscillator circuit when the first and second inputs to the comparator are equal.