Abstract:
Disclosed is a liquefied natural gas storage apparatus. The apparatus includes a heat insulated tank and liquefied natural gas contained in the tank. The tank has heat insulation sufficient to maintain liquefied natural gas therein such that most of the liquefied natural gas stays in liquid. The contained liquefied natural gas has a vapor pressure from about 0.3 bar to about 2 bar. The apparatus further includes a safety valve configured to release a part of liquefied natural gas contained in the tank when a vapor pressure of liquefied natural gas within the tank becomes higher than a cut-off pressure. The cut-off pressure is from about 0.3 bar to about 2 bar.
Abstract:
An oxidation catalyst unit for a wet-type electrophotographic image forming apparatus which oxidizes a carrier vapor generated in a fusing unit and method for controlling the same are provided. The wet-type electrophotographic image forming apparatus includes a photoconductive medium, a laser scanning unit scans a laser beam onto the photoconductive medium, a developing unit develops a developer on the photoconductive medium, a transfer unit transfers the developer on the photoconductive medium to a recording medium, a fusing unit fixes the developer on the recording medium, and an oxidation catalyst unit oxidizes and resolves a carrier vapor generated in the fusing unit. The oxidation catalyst unit comprises a duct connected to the fusing unit to guide the carrier vapor generated in the fusing unit into the oxidation catalyst unit, a fan for guiding the carrier vapor into the duct, and a controller for varying a velocity of the fan according to data.
Abstract:
Provided is a method for operating a fuel supply system for a marine structure. The fuel supply system includes a BOG compression unit configured to receive and compress BOG generated in a storage tank, a reliquefaction apparatus configured to receive and liquefy the BOG compressed by the BOG compression unit, a high-pressure pump configured to compress the liquefied BOG generated by the reliquefaction apparatus, and a high-pressure gasifier configured to gasify the liquefied BOG compressed by the high-pressure pump. The fuel supply system includes a recondenser installed at an upstream side of the high-pressure pump, and the recondenser recondenses a portion or all of the generated BOG by using liquefied gas supplied from the storage tank. During a ballast voyage process, all of the BOG is supplied to and recondensed by the recondenser, and an operation of the reliquefaction apparatus is interrupted.
Abstract:
Disclosed is a system for reducing a heating value of natural gas. The system includes a heat exchanger to liquefy a portion of components having high heating values, a gas-liquid separator to separate the liquefied component, and a nitrogen adding mechanism to add nitrogen to remaining non-liquefied components. The system includes an additional heat exchanger to cool and liquefy the remaining non-liquefied components after the gas-liquid separator separates the liquefied component from the natural gas. The heat exchangers employ cold heat generated upon regasification of LNG. The system can reduce the heating value of natural gas composed of a variety of hydrocarbon components according to requirements of a place of demand by separating the component with the higher heating value from the natural gas to allow the separated component to be used as fuel, thereby reducing an overall size and operating costs of the system.
Abstract:
Provided is a fuel supply system for a marine structure. The fuel supply system includes a BOG compression unit configured to receive and compress BOG generated in a storage tank, a reliquefaction apparatus configured to receive and liquefy the BOG compressed by the BOG compression unit, a high-pressure pump configured to compress the liquefied BOG generated by the reliquefaction apparatus, and a high-pressure gasifier configured to gasify the liquefied BOG compressed by the high-pressure pump. The fuel supply system includes a recondenser installed at an upstream side of the high-pressure pump and configured to recondense a portion or all of the generated BOG by using liquefied gas received from the storage tank. The BOG compression unit compresses BOG to a pressure of about 12 to 45 bara such that the BOG is liquefied under the compression pressure of the BOG compression unit.
Abstract:
Provided is a fuel supply system for a high-pressure natural gas injection engine. The fuel supply system includes: a BOG compression unit configured to receive BOG, which is generated in a storage tank, from the storage tank and compress the received BOG to a pressure of 12 to 45 bara; a reliquefaction apparatus configured to receive and liquefy the BOG compressed by the BOG compression unit; a high-pressure pump configured to compress the BOG liquefied by the reliquefaction apparatus; a high-pressure gasifier configured to gasify the BOG compressed by the high-pressure pump and supply the gasified BOG to the high-pressure natural gas injection engine; and an excess BOG consumption unit configured to consume excess BOG corresponding to a difference between an amount of BOG generated in the storage tank and an amount of BOG required as fuel for the high-pressure natural gas injection engine.
Abstract:
Disclosed is a liquefied natural gas storage apparatus. The apparatus includes a heat insulated tank and liquefied natural gas contained in the tank. The tank has heat insulation sufficient to maintain liquefied natural gas therein such that most of the liquefied natural gas stays in liquid. The contained liquefied natural gas has a vapor pressure from about 0.3 bar to about 2 bar. The apparatus further includes a safety valve configured to release a part of liquefied natural gas contained in the tank when a vapor pressure of liquefied natural gas within the tank becomes higher than a cut-off pressure. The cut-off pressure is from about 0.3 bar to about 2 bar.
Abstract:
An apparatus and method for increasing efficiency of a gas turbine and a marine structure having the gas turbine are disclosed. The marine structure has a cargo tank for storing cryogenic liquefied natural gas (LNG) and a gas turbine for generating electric power. The marine structure further includes a heat exchanger to cool air for combustion supplied to the gas turbine using a cold source or cold heat of the LNG stored in the cargo tank, a heat transfer medium circuit to indirectly transfer the cold source of the LNG stored in the cargo tank to the heat exchanger, and a heater to heat a heat transfer medium having undergone heat exchange with the air for combustion while passing through the heat exchanger. The temperature of air supplied to the gas turbine is lowered using the cold source generated upon regasification of LNG in the marine structure, thereby increasing the efficiency of the gas turbine.
Abstract:
A fuel gas supply system of a vessel, such as an LNG carrier, is provided for supplying fuel gas to a high-pressure gas injection engine of an LNG carrier, wherein LNG is extracted from an LNG storage tank of the LNG carrier, compressed at a high pressure, gasified, and then supplied to the high-pressure gas injection engine. In one embodiment, the system includes a boil-off gas reliquefaction apparatus for reliquefying boil-off gas generated in the LNG tank.
Abstract:
Disclosed herein is an apparatus and method for liquefied natural gas (LNG) carrier propulsion. In the apparatus and method, the propulsion of an LNG carrier is done by only a single main diesel engine and has construction to promptly cope with emergencies caused by malfunction of the main diesel engine. The propulsion apparatus for an LNG carrier comprising a boil-off gas re-liquefaction apparatus for re-liquefying boil-off gas generated in LNG storage tanks to return re-liquefied boil-off gas back to the LNG storage tank comprises a single main diesel engine, a propulsion shaft separably connected to the main diesel engine, and an electric motor for propulsion separably connected to the propulsion shaft and supplied with power intended for operation of the boil-off gas re-liquefaction apparatus.