Abstract:
For quarantine treatment of a farming and forestry product for pest control, a method and a device may irradiate logs as a phytosanitary treatment with electron beams. The method may include: spreading the logs; aligning the spread logs to be flush at one end; conveying the spread and flush logs laterally; conveying the logs longitudinally through an irradiation field formed by accelerators to provide treatment of irradiation with the electron beams; throwing the irradiated logs out; and laterally conveying the logs away. The device may include a conveying device for conveying the logs, a shielding structure surrounding the conveying device, and accelerators provided in the conveying path of the conveying device. Two or more accelerators may be provided in centrosymmetry about the conveying path.
Abstract:
A method and a system for contraband detection in an object using photoneutrons and x-rays includes an x-ray generator that generates an x-ray main beam including a first x-ray beam and a second x-ray beam, the first x-ray beam being directed to pass through the object. A photoneutron conversion target is arranged to receive the second x-ray beam so as to generate photoneutrons, the photoneutrons being directed to enter the object and react with the object to emit characteristic γ-rays. An x-ray detecting arrangement is arranged to receive the first x-ray beam that has passed through the object in order to perform x-ray imaging detection of the detected object. A γ-ray detecting arrangement is arranged to receive the characteristic γ-rays in order to perform neutron detection of the object based on the characteristic γ-rays. The x-ray imaging detection and the neutron detection are simultaneously performed.
Abstract:
The present invention discloses a method for performing CT imaging on a region of interest of an object under examination, comprising: acquiring the CT projection data of the region of interest; acquiring the CT projection data of region B; selecting a group of PI line segments covering the region of interest, and calculating the reconstruction image value for each PI line segment in the group; and combining the reconstruction image values in all the PI line segments to obtain the image of the region of interest. The present invention further discloses a CT imaging device using this method and a data processor therein. Since the 2D/3D slice image of the region of interest can be exactly reconstructed and obtained as long as the X-ray beam covers the region of interest and the region B, it is possible to use a small-sized detector to perform CT imaging on the region of interest at any position of a large-sized object, which reduces to a great extent the radiation dose of the X-ray during the CT scanning.
Abstract:
A method and apparatus for CT image reconstruction may include selecting, by a unit, projection data of the same height on a curve having a curvature approximate to that of the scanning circular orbit, implementing, by a unit, a weighting processing on the selected projection data, filtering, by a unit, the weighting processed projection data along a horizontal direction, implementing, by a unit, three-dimensional back projection on the filtered projection data along the direction of ray. The method and apparatus can effectively eliminate cone beam artifact under a large cone angle.
Abstract:
A lifting apparatus includes a vertical guide device, a turntable device which is movable along the vertical guide device upwards or downwards, and a first driving device which drives the turntable device moving in an upward and downward direction guided by the vertical guide device. The turntable device includes a bracket which is slidably engaged with the vertical guide device and projects perpendicularly toward a side of the vertical guide device, a turntable which is rotatably provided on the bracket, and a second driving device which rotates the turntable on the bracket.
Abstract:
A method for phase contrast imaging comprises: illuminating an object by terahertz radiation such that the terahertz radiation interacts with the object; illuminating a diffraction grating by the terahertz radiation that has interacted with the object; translating the diffraction grating along the direction of the grating wave vector, to measure, for each of different grating positions, an intensity distribution of the terahertz radiation that has interacted with the object and with the grating in a diffraction field; and retrieving a phase contrast image of the object from the intensity distributions. An apparatus for phase contrast imaging is also provided.
Abstract:
Disclosed is an inspection system for inspecting a cargo by using radiation, comprising: a main plate conveyor; a radiation scanning unit that spans said main plate conveyor and is provided above said main plate conveyor, for scanning the cargo provided on the main plate conveyor; auxiliary conveyors that are provided at the front end and rear end of said main plate conveyor, respectively, so as to load the cargo to be inspected onto said main plate conveyor and to unload the inspected cargo from said main plate conveyor; and lifting devices for lifting said auxiliary conveyors. The inspection system according to the present invention occupies less area, has simple corollary equipments, a lower operating cost, and excellent compatibility, and can be widely applied.
Abstract:
An X-CT scan system includes a base, an object rotary support, an X-ray generation device and a data acquisition system, wherein one side of the detector is leveled to or beyond the prolong line of the connecting line between the X-ray source of the X-ray generation device and the center of the object rotary support, the length of the beyond portion is less than the radius of the imaging field. The advantage of the invention is in that the invention can reconstruct the entire image of the object by means of X-ray projection data which only covers half of the area of the object. Compared with the traditional CT scan system, half of the detector size can be saved at most. The X-CT scan system is simplified and the projection data amount for scan and computation amount for image reconstruction are also reduced with the reconstructed image quality guaranteed.
Abstract:
A method for substance identification and an apparatus thereof are disclosed. The method comprises comprising steps of: transmitting an object under inspection using high-energy rays and low-energy rays, so as to obtain a high-energy transmission image and a low-energy transmission image for the object, wherein a value of each pixel in the high-energy image indicates a high-energy transparency of the high-energy rays with respect to corresponding parts of the object, and a value of each pixel in the low-energy image indicates a low-energy transparency of the low-energy rays with respect to corresponding parts of the object; calculating a value of a first function for the high-energy transparency and a value of a second function for the high-energy transparency and the low-energy transparency, for each pixel; and classifying locations determined by the value of the first function and the value of the second function using a pre-created classification curve, so as to identify the type of the substance of a part of the object corresponding to each pixel. With the present invention, it is possible to not only obtain a transmission image of the object, but also obtain material information in the object.
Abstract:
A multiple-view-angle cargo security inspection method for inspecting an object using a cargo security inspection system, the cargo security inspection system including a radiation source for generating a beam of rays for transmitting through the object to be inspected and a data collecting unit for collecting the transmission projection data after the beam of rays has transmitted through the inspected object, the method including a scanning step including: rotating the radiation source and/or the object about a rotation axis so as to achieve a relative rotation, thereby positioning the radiation source in a plurality of discrete positions with different view angles with respect to the inspected object, wherein, in each view angle, the radiation source moves along a straight line in a direction parallel to the rotation axis and at the same time scans the inspected object so as to acquire the transmission projection data at each view angle.