Abstract:
For interlaced B-fields or interlaced B-frames, an encoder/decoder uses 4MV coding. For example, 4MV is used in one-direction prediction modes (forward or backward modes), but not in other available prediction modes (e.g., direct, interpolated). Using 4MV allows more accurate motion compensation for interlaced B-fields and interlaced B-frames; limiting 4MV to forward and backward modes reduces coding overhead and avoids decoding complexity associated with combining 4MV with modes such as direct and interpolated.
Abstract:
Indexing methods are described that may be used by databases, search engines, query and retrieval systems, context sensitive data mining, context mapping, language identification, image recognition, and robotic systems. Raw baseline features from an input signal are aggregated, abstracted and indexed for later retrieval or manipulation. The feature index is the quantization number for the underlying features that are represented by an abstraction. Trajectories are used to signify how the features evolve over time. Features indexes are linked in an ordered sequence indicative of time quanta, where the sequence represents the underlying input signal. An example indexing system based on the described processes is an inverted index that creates a mapping from features or atoms to the underlying documents, files, or data. A highly optimized set of operations can be used to manipulate the quantized feature indexes, where the operations can be fine tuned independent from the base feature set.
Abstract:
Repetition of content words in a communication is used to increase the certainty, or, alternatively, reduce the uncertainty, that the content words were actual words from the communication. Reducing the uncertainty of a particular content word of a communication in turn increases the likelihood that the content word is relevant to the communication. Reliable, relevant content words mined from a communication can be used for, e.g., automatic internet searches for documents and/or web sites pertinent to the communication. Reliable, relevant content words mined from a communication can also, or alternatively, be used to automatically generate one or more documents from the communication, e.g., communication summaries, communication outlines, etc.
Abstract:
For interlaced B-fields or interlaced B-frames, forward motion vectors are predicted by an encoder/decoder using forward motion vectors from a forward motion vector buffer, and backward motion vectors are predicted using backward motion vectors from a backward motion vector buffer. The resulting motion vectors are added to the corresponding buffer. Holes in motion vector buffers can be filled in with estimated motion vector values. An encoder/decoder switches prediction modes between fields in a field-coded macroblock of an interlaced B-frame. For interlaced B-frames and interlaced B-fields, an encoder/decoder computes direct mode motion vectors. For interlaced B-fields or interlaced B-frames, an encoder/decoder uses 4 MV coding. An encoder/decoder uses “self-referencing” B-frames. An encoder sends binary information indicating whether a prediction mode is forward or not-forward for one or more macroblocks in an interlaced B-field. An encoder/decoder uses intra-coded B-fields [“BI-fields”].
Abstract:
Forward motion vectors are predicted by an encoder/decoder using previously reconstructed (or estimated) forward motion vectors from a forward motion vector buffer, and backward motion vectors are predicted using previously reconstructed (or estimated) backward motion vectors from a backward motion vector buffer. The resulting motion vectors are added to the corresponding buffer. Holes in motion vector buffers can be filled in with estimated motion vector values. For example, for interlaced B-fields, to choose between different polarity motion vectors (e.g., “same polarity” or “opposite polarity”) for hole-filling, an encoder/decoder selects a dominant polarity field motion vector. The distance between anchors and current frames is computed using various syntax elements, and the computed distance is used for scaling reference field motion vectors.
Abstract:
Techniques and tools for encoding and decoding motion vector information for video images are described. For example, a video encoder yields an extended motion vector code by jointly coding, for a set of pixels, a switch code, motion vector information, and a terminal symbol indicating whether subsequent data is encoded for the set of pixels. In another aspect, an encoder/decoder selects motion vector predictors for macroblocks. In another aspect, a video encoder/decoder uses hybrid motion vector prediction. In another aspect, a video encoder/decoder signals a motion vector mode for a predicted image. In another aspect, a video decoder decodes a set of pixels by receiving an extended motion vector code, which reflects joint encoding of motion information together with intra/inter-coding information and a terminal symbol. The decoder determines whether subsequent data exists for the set of pixels based on e.g., the terminal symbol.
Abstract:
Techniques and tools for encoding and decoding motion vector information for video images are described. For example, a video encoder yields an extended motion vector code by jointly coding, for a set of pixels, a switch code, motion vector information, and a terminal symbol indicating whether subsequent data is encoded for the set of pixels. In another aspect, an encoder/decoder selects motion vector predictors for macroblocks. In another aspect, a video encoder/decoder uses hybrid motion vector prediction. In another aspect, a video encoder/decoder signals a motion vector mode for a predicted image. In another aspect, a video decoder decodes a set of pixels by receiving an extended motion vector code, which reflects joint encoding of motion information together with intra/inter-coding information and a terminal symbol. The decoder determines whether subsequent data exists for the set of pixels based on e.g., the terminal symbol.
Abstract:
In one embodiment, datasets are stored in a catalog. The datasets are enriched by establishing relationships among the domains in different datasets. A user searches for relevant datasets by providing examples of the domains of interest. The system identifies datasets corresponding to the user-provided examples. The system them identifies connected subsets of the datasets that are directly linked or indirectly linked through other domains. The user provides known relationship examples to filter the connected subsets and to identify the connected subsets that are most relevant to the user's query. The selected connected subsets may be further analyzed by business intelligence/analytics to create pivot tables or to process the data.
Abstract:
Embodiments for implementing a speech recognition system that includes a speech classifier ensemble are disclosed. In accordance with one embodiment, the speech recognition system includes a classifier ensemble to convert feature vectors that represent a speech vector into log probability sets. The classifier ensemble includes a plurality of classifiers. The speech recognition system includes a decoder ensemble to transform the log probability sets into output symbol sequences. The speech recognition system further includes a query component to retrieve one or more speech utterances from a speech database using the output symbol sequences.
Abstract:
A clustering tool to generate word clusters. In embodiments described, the clustering tool includes a clustering component that generates word clusters for words or word combinations in input data. In illustrated embodiments, the word clusters are used to modify or update a grammar for a closed vocabulary speech recognition application.