Abstract:
A capacity increase and/or pressure decrease of gas in a gas storage and dispensing vessel is achieved by use of a physical adsorbent having sorptive affinity for the gas. Such approach enables conventional high pressure gas cylinders to be redeployed with contained sorbent, to achieve substantial enhancement of safety and capacity.
Abstract:
A fluid distribution system for supplying a gas to a process facility such as a semiconductor manufacturing plant. The system includes a main fluid supply vessel coupled by flow circuitry to a local sorbent-containing supply vessel from which fluid, e.g., low pressure compressed gas, is dispensed to a fluid-consuming unit, e.g., a semiconductor manufacturing tool. A fluid pressure regulator is disposed in the flow circuitry or the main liquid supply vessel and ensures that the gas flowed to the fluid-consuming unit is at desired pressure. The system and associated method are particularly suited to the supply and utilization of liquefied compressed gases such as trimethylsilane, arsine, phosphine, and dichlorosilane.
Abstract:
A fluid storage and dispensing system comprising a vessel for holding a fluid at a desired pressure. The vessel has a pressure regulator associated with a port of the vessel, and set at a predetermined pressure. A dispensing assembly, e.g, including a flow control means such as a valve, is arranged in gas/vapor flow communication with the regulator, whereby the opening of the valve effects dispensing of gas/vapor from the vessel. The fluid in the vessel may be constituted by a liquid which is confined in the vessel at a pressure in excess of its liquefaction pressure at prevailing temperature conditions, e.g., ambient (room) temperature. A phase separator such as a gas/vapor-permeable liquid-impermeable membrane, may be associated with the regulator, as a barrier to flow of liquid into the regulator, when the contained fluid in the vessel is in a liquid state.
Abstract:
A fluid storage and dispensing system comprising a vessel for holding a fluid at a desired pressure. The vessel has a pressure regulator, e.g., a single-stage or multi-stage regulator, associated with a port of the vessel, and set at a predetermined pressure. A dispensing assembly, e.g., including a flow control means such as a valve, is arranged in gas/vapor flow communication with the regulator, whereby the opening of the valve effects dispensing of gas/vapor from the vessel. The fluid in the vessel may be constituted by a liquid that is confined in the vessel at a pressure in excess of its liquefaction pressure at prevailing temperature conditions, e.g., ambient (room) temperature. In another aspect, the vessel contains a solid-phase sorbent material having sorbable gas adsorbed thereon, at a pressure in excess of 50 psig. The vessel may have a >1 inch NGT threaded neck opening, to accommodate the installation of an interior regulator.
Abstract:
Apparatus and method for dispensing a gas using a gas source coupled in selective flow relationship with a gas manifold. The gas manifold includes flow circuitry for discharging gas to a gas-using zone, and the gas source includes a pressure-regulated gas source vessel containing the gas at superatmospheric pressure. The pressure-regulated gas source vessel can be arranged with a pressure regulator at or within the vessel and a flow control valve coupled in flow relationship to the vessel, so that gas dispensed from the vessel flows through the regulator prior to flow through the flow control valve, and into the gas manifold. The apparatus and method permit an enhancement of the safety of storage and dispensing of toxic or otherwise hazardous gases used in semiconductor processes.
Abstract:
A method and apparatus for manufacture of carbon nanotubes, in which a substrate is contacted with a hydrocarbonaceous feedstock containing a catalytically effective metal to deposit the feedstock on the substrate, followed by oxidation of the deposited feedstock to remove hydrocarbonaceous and carbonaceous components from the substrate, while retaining the catalytically effective metal thereon, and contacting of the substrate having retained catalytically effective metal thereon with a carbon source material to grow carbon nanotubes on the substrate. The manufacture can be carried out with a petroleum feedstock such as an oil refining atmospheric tower residue, to produce carbon nanotubes in high volume at low cost. Also disclosed is a composite including porous material having single-walled carbon nanotubes in pores thereof.
Abstract:
A delivery system for vaporizing and delivering vaporized solid and liquid precursor materials at a controlled rate having particular utility for semiconductor manufacturing applications. The system includes a vaporization vessel, a processing tool and a connecting vapor line therebetween, where the system further includes an input flow controller and/or an output flow controller to provide a controlled delivery of a vaporizable source material to the vaporization vessel and a controlled flow rate of vaporized source material to the processing tool.
Abstract:
A delivery system for vaporizing and delivering vaporized solid and liquid precursor materials at a controlled rate having particular utility for semiconductor manufacturing applications. The system includes a vaporization vessel, a processing tool and a connecting vapor line therebetween, where the system further includes an input flow controller and/or an output flow controller to provide a controlled delivery of a vaporizable source material to the vaporization vessel and a controlled flow rate of vaporized source material to the processing tool.
Abstract:
The invention relates to a fluid storage and delivery system utilizing a porous metal matrix that comprises at least one Group VIII metal or Group IB metal therein. In one aspect of the invention, such porous metal matrix forms a solid-phase metal adsorbent medium, characterized by an average pore diameter of from about 0.5 nm to about 2.0 nm and a porosity of from about 10% to about 30%. Such solid-phase metal adsorbent medium is particularly useful for sorptively storing and desoprotively dispensing a low vapor pressure fluid, e.g., ClF3, HF, GeF4, Br2, etc. In another aspect of the invention, such porous metal matrix forms a solid-phase metal sorbent, characterized by an average pore diameter of from about 0.25 &mgr;m to about 500 &mgr;m and a porosity of from about 15% to about 95%, which can effectively immobilize low vapor pressure liquefied gas.