Abstract:
A rotary electric machine includes a rotor, a stator having coils wound to surround the rotor, a cylindrical ring member fixedly mounted on the stator by shrinkage fitting, and a frame disposed on the outside of the ring member with a gap created in between. The distance of the gap varies as a result of thermal expansion of the stator and the ring member. An outer surface of the ring member goes into contact with the frame when the stator and the ring member thermally expand, whereby the stator and the ring member are efficiently cooled.
Abstract:
Phase coils are each configured by winding a conductor wire in a concentrated winding consecutively on three circumferentially consecutive tooth portions, six inverter units of an inverter module are each disposed in close proximity to a motor so as to face each of the phase coils axially, and the motor and the inverter module are electrically connected by connecting an alternating-current output terminals of each of the plurality of inverter units to output wires of the phase coils that face the inverter units axially.
Abstract:
An engine, an electric motor-generator, an oil pump, an air conditioner, and a first power transmitting means that performs power transmission among a crank shaft of the engine, a rotating shaft of the electric motor-generator, and rotating shafts of the oil pump and the air conditioner are included. The first power transmitting means has: a crank pulley; a first electric motor-generator pulley; an oil pump pulley; an air conditioner pulley; a first belt that is wound around these pulleys; and a first one-way clutch that is interposed between the rotating shaft and the first electric motor-generator pulley so as to transmit a rotational driving force from the crank shaft to the rotating shaft without transmitting a rotational driving force from the rotating shaft to the crank shaft, and the electric motor-generator is motor driven while the engine is being driven.
Abstract:
A regenerating braking system is provided, which includes: a synchronous motor with field coil excitation including a cylindrical stator coil, an inverter electrically connected to the stator coil, a battery electrically connected to the inverter, a rotor coil provided in an internal space of the stator coil, a two-way switch electrically connected to the rotor coil, and a capacitor electrically connected to the two-way switch; and a controller, wherein when the first differential calculus of acceleration of a load on the synchronous motor becomes negative, the controller stores regenerative power regenerated in the rotor coil from the stator coil, in the capacitor through the two-way switch, and wherein the controller supplies the regenerative power stored in the capacitor to the rotor coil through the two-way switch.
Abstract:
In a rotary electric motor a first stator core and a second stator core are disposed coaxially so as to be separated by a predetermined distance axially and such that circumferential positions of teeth are aligned, and a first rotor core and a second rotor core on which salient poles are disposed at a uniform angular pitch circumferentially are fixed coaxially to a rotating shaft so as to be positioned on inner peripheral sides of the first stator core and the second stator core, respectively, and so as to be offset circumferentially by a pitch of half a salient pole from each other. A first permanent magnet that is magnetically oriented such that a direction of magnetization is radially inward is disposed on an outer peripheral surface of a core back of the first stator core, and an outer peripheral surface of the first permanent magnet and the outer peripheral surface of the core back of the second stator core are linked by a frame that is made of a magnetic material.
Abstract:
A high-efficiency magnetic inductor rotary machine in which eddy current loss is reduced even if driven at super-high-speed rotation, and a fluid transfer apparatus that uses the same. In the magnetic inductor rotary machines, first and second stator cores are disposed coaxially such that circumferential positions of teeth are aligned, and first and second rotor cores are fixed coaxially to a rotating shaft such that salient poles are offset by a pitch of half a salient pole circumferentially, and are disposed on an inner peripheral side of the first and second stator cores. A salient pole width of the salient poles of the first and second rotor cores is configured so as to be greater than an opening width of slots of a stator.
Abstract:
A dynamoelectric machine that can suppress increases in rotor inertia to extend belt service life and increase field magnetomotive force to increase output. In the dynamoelectric machine, first and second magnetic guidance members are fitted into first and second holding grooves that are disposed so as to extend axially on facing portions of first and second trough portions radially outside inner wall surfaces, and are disposed so as to span over first and second trough portions. First and second permanent magnets that are magnetically oriented in a reverse direction to a magnetic field that originates from a field coil are fitted into and held by interfitting grooves of the first and second magnetic guidance members so as to face inner circumferential surfaces near tip ends of second and first claw-shaped magnetic pole portions so as to have a predetermined clearance.
Abstract:
First and second magnet holding apertures are disposed through first and second permanent magnet holding seats that are disposed so as to protrude from first and second yoke portions so as to have aperture centers that are oriented in an axial direction. Cylindrical resin first and second magnet loading portions are disposed so as to project integrally on first and second fans such that central axes thereof are oriented in the axial direction, and first and second permanent magnets are insert-molded into the first and second magnet loading portions. The first and second fans are fixed to first and second pole cores by fitting the first and second magnet loading portions together with the first and second magnet holding apertures.
Abstract:
A hybrid-excited rotating machine comprising: a stator winding of a multi-phase Y-connection; a plurality of rotor magnetic poles fixed on a rotor shaft 3 at a predetermined spacing in the circumferential direction and confronting the inner circumference of said stator through a air gap; a plurality of permanent magnets fixed at substantially central portions of said circumferential direction of said individual rotor magnetic poles and magnetized in the radial direction of said rotor shaft; and a plurality of field windings wound individually on said rotor magnetic poles.
Abstract:
A method of controlling an electric rotating machine for a vehicle includes an electric rotating machine (1) including a rotator having a field winding (5) and a stator having an armature winding (3), a field current controller (9) for controlling a field current supplied from a direct-current power supply to the field winding (5), and a power converter (6) for converting a direct-current power into an alternating-current power and applying the power to the armature winding (3). When the field current controller (9) starts to supply a current to the field winding (5) for starting an internal combustion engine, the power converter (6) supplies a power to the armature winding (3) so that magnetic flux in a direction opposite to that generated by the field winding (5) is generated simultaneously with or immediately before starting the power supply.