摘要:
An oxide superconducting film is formed using laser deposition of applying an excimer laser beam (1, 21) onto a target (3, 23) through a converging lens (2, 22) and depositing atoms and/or molecules scattered from the target (3, 23) on the base material (5). The converging lens (2) is prepared by a cylindrical lens, or the converging lens (22) is moved, so that a portion (4, 25) irradiated with the laser beam (1, 21) on the target (3, 23) is linearized. Thus, it is possible to form an oxide superconducting film which is homogeneous over a region having a relatively large area on the base material (5) not only in film thickness but also in property.
摘要:
A superconducting ceramics elongated body comprising a flexible ceramics elongated substrate and an oxide ceramics superconducting layer formed at least on a part of the surface of the ceramics elongated substrate to longitudinally extend along the ceramics elongated substrate. The superconducting ceramics elongated body further comprises a protective layer of ceramics containing a nitride, which is provided to at least cover the surface of the superconducting layer exposed on the ceramics elongated substrate. A method of manufacturing a superconducting ceramics elongated body by forming a longitudinally continuous superconducting layer on at least a part of the surface of a flexible ceramics elongated substrate. The superconducting layer is formed on the elongated substrate by a sol-gel method, a coating/sintering method, evaporation under oxygen ions, deposition from a fluoride solution or oxidation after application of corresponding fluorides.
摘要:
A superconducting wire comprises a flexible base material having average surface roughness of not more than 0.05 .mu.m and an oxide superconducting layer formed on the base material.A superconducting wire comprises a flexible base material of yttria stabilized zirconia containing less than 0.1 percent by weight of an Al impurity and an oxide superconducting layer formed on the base material.
摘要:
When an oxide superconducting thin film is formed on a substrate by a vapor phase method such as laser ablation, for example, a plurality of grooves are formed on the substrate by photolithography or beam application in the same direction with an average groove-to-groove pitch of not more than 10 .mu.m, so that the oxide superconducting thin film is formed on a surface provided with such a plurality of grooves. Thus promoted is growth of crystals of the oxide superconducting thin film in parallel with the grooves, whereby respective directions of a-axes and c-axes are regulated to some extent. This improves critical current density of the oxide superconducting thin film.