Abstract:
This invention pertains generally to the field of chemical synthesis and purification, and more specifically to methods of synthesizing and purifying certain 3,7 diamino-phenothiazin-5-ium compounds (referred to herein as “diaminophenothiazinium compounds”) including Methylthioninium Chloride (MTC) (also known as Methylene Blue). In one embodiment, the method comprises the steps of, in order: nitrosylation (NOS); nitrosyl reduction (NR); thiosulfonic acid formation (TSAF); oxidative coupling (OC); Cr(VI) reduction (CR); isolation and purification of zwitterionic intermediate (IAPOZI); ring closure (RC); chloride salt formation (CSF); one of: sulphide treatment (ST); dimethyldithiocarbamate treatment (DT); carbonate treatment (CT); ethylenediaminetetraacetic acid treatment (EDTAT); organic extraction (OE); and recrystallisation (RX). The present invention also pertains to the resulting (high purity) compounds, compositions comprising them (e.g., tablets, capsules), and their use in methods of inactivating pathogens, and methods of medical treatment and diagnosis, etc., for example, for tauopathies, Alzheimer's disease (AD), skin cancer, melanoma, viral diseases, bacterial diseases, or protozoal diseases. Wherein: each of R1 and R9 is independently selected from: —H; C1-4 alkenyl; and halogenated C1-4alkyl; each of R3NA and R3NB is independently selected from: C1-4 alkyl; C2-4alkenyl; and halogenated C4-1 alkyl; each of R7NA and R7NB is independently selected from: C1-4 alkyl; C2-4alkenyl; and halogenated C1-4 alkyl; and X is one or more anionic counter ions to achieve electrical neutrality.
Abstract:
This invention pertains generally to the field of phenothiazine compounds, and more particularly to certain stably reduced phenothiazine compounds, specifically, certain 3,7 diamino-10H-phenothiazine (DAPTZ) compounds of the following formula wherein: each of R1 and R9 is independently selected from: —H; C1-4alkyl; C2-4alkenyl; and halogenated C1-4alkyl; each of R3NA and R3NB is independently selected from: —H; C1-4alkyl; C2-4alkenyl; and halogenated C1-4alkyl; each of R7NA and R7NB is independently selected from: —H; C1-4alkyl; C2-4alkenyl; and halogenated C1-4alkyl; each of HX1 and HX2 is independently a protic acid; and pharmaceutically acceptable salts, solvates, and hydrates thereof. These compounds are useful as drugs, for example, in the treatment of tauopathies, such as Alzheimer's disease, and also as prodrugs for the corresponding oxidized thioninium drugs (for example, methythioninium chloride, MTC).
Abstract translation:本发明一般涉及吩噻嗪化合物领域,更具体地涉及某些稳定还原的吩噻嗪化合物,具体地,下列通式的某些3,7-二氨基-10H-吩噻嗪(DAPTZ)化合物其中:R 1和R 9各自独立地选自 从:-H; C 1-4烷基; C2-4烯基; 和卤代C 1-4烷基; R3NA和R3NB中的每一个独立地选自:-H; C 1-4烷基; C2-4烯基; 和卤代C 1-4烷基; R7NA和R7NB中的每一个独立地选自:-H; C 1-4烷基; C2-4烯基; 和卤代C 1-4烷基; HX1和HX2各自独立地是质子酸; 及其药学上可接受的盐,溶剂化物和水合物。 这些化合物可用作药物,例如用于治疗tau蛋白病如阿尔茨海默氏病,以及作为相应的氧化硫堇药物(例如氯化甲硫氨酸,MTC)的前药。
Abstract:
This invention pertains generally to the field of chemical synthesis and purification, and more specifically to methods of synthesizing and purifying certain 3,7 diamino-phenothiazin-5-ium compounds (referred to herein as “diaminophenothiazinium compounds”) including Methylthioninium Chloride (MTC) (also known as Methylene Blue). In one embodiment, the method comprises the steps of, in order: nitrosylation (NOS); nitrosyl reduction (NR); thiosulfonic acid formation (TSAF); oxidative coupling (OC); Cr(VI) reduction (CR); isolation and purification of zwitterionic intermediate (IAPOZI); ring closure (RC); chloride salt formation (CSF); one of: sulphide treatment (ST); dimethyldithiocarbamate treatment (DT); carbonate treatment (CT); ethylenediaminetetraacetic acid treatment (EDTAT); organic extraction (OE); and recrystallisation (RX). The present invention also pertains to the resulting (high purity) compounds, compositions comprising them (e.g., tablets, capsules), and their use in methods of inactivating pathogens, and methods of medical treatment and diagnosis, etc., for example, for tauopathies, Alzheimer's disease (AD), skin cancer, melanoma, viral diseases, bacterial diseases, or protozoal diseases. Wherein: each of R1 and R9 is independently selected from: —H; C1-4 alkenyl; and halogenated C1-4alkyl; each of R3NA and R3NB is independently selected from: C1-4 alkyl; C2-4alkenyl; and halogenated C4-1 alkyl; each of R7NA and R7NB is independently selected from: C1-4 alkyl; C2-4alkenyl; and halogenated C1-4 alkyl; and X is one or more anionic counter ions to achieve electrical neutrality.
Abstract:
This invention pertains generally to the field of chemical synthesis and purification, and more specifically to methods of synthesizing and purifying certain 3,7 diamino-phenothiazin-5-ium compounds (referred to herein as “diaminophenothiaziniumcompounds”) including Methylhioninium Chloride (MTC) (also known as Methylene Blue). In one embodiment, the method comprises the steps of, in order: nitrosylation (NOS); nitrosyl reduction (NR); thiosulfonic acid formation (TSAF); oxidative coupling (OC); Cr(VI) reduction (CR); isolation and purification of zwitterionic intermediate (IAPOZI); ring closure (RC); chloride salt-formation (CSF); one of: sulphide treatment (ST); dimethyldithiocarbamate treatment (DT); carbonate treatment (CT); ethylenediaminetetraacetic acid treatment (EDTAT); organic extraction (OE); and recrystallisation (RX). The present invention also pertains to the resulting (high purity) compounds, compositions comprising them (e.g., tablets, capsules), and their use in methods of inactivating pathogens, and methods of medical treatment and diagnosis, etc., for example, for tauopathies, Alzheimer's disease (AD), skin cancer, melanoma, viral diseases, bacterial diseases, or protozoal diseases.
Abstract:
This invention pertains generally to the field of chemical synthesis and purification, and more specifically to methods of synthesizing and purifying certain 3,7 diamino-phenothiazin-5-ium compounds (referred to herein as “diaminophenothiaziniumcompounds”) including Methylhioninium Chloride (MTC) (also known as Methylene Blue). In one embodiment, the method comprises the steps of, in order: nitrosylation (NOS); nitrosyl reduction (NR); thiosulfonic acid formation (TSAF); oxidative coupling (OC); Cr(VI) reduction (CR); isolation and purification of zwitterionic intermediate (IAPOZI); ring closure (RC); chloride salt-formation (CSF); one of: sulphide treatment (ST); dimethyldithiocarbamate treatment (DT); carbonate treatment (CT); ethylenediaminetetraacetic acid treatment (EDTAT); organic extraction (OE); and recrystallisation (RX). The present invention also pertains to the resulting (high purity) compounds, compositions comprising them (e.g., tablets, capsules), and their use in methods of inactivating pathogens, and methods of medical treatment and diagnosis, etc., for example, for tauopathies, Alzheimer's disease (AD), skin cancer, melanoma, viral diseases, bacterial diseases, or protozoal diseases.
Abstract:
A durable holographically imaged paper, plastic film or other product is produced by embossing the image into a thermoplastic coating thereon which comprises plastic pigment particles. The plastic pigment particles are preferably hollow but may be solid. The coating preferably also comprises a thermoplastic polymer or copolymer, for example a copolymer of vinyl acetate and versatic acid, an acrylic polymer, a styrene-acrylic or other acrylic copolymer, a vinyl chloride-vinyl acetate-ethylene terpolymer, a polyvinyl acetate or a polyvinyl alcohol. Preferably, the polymer or copolymer has a glass transition temperature (Tg value) in the range 20° C. to 110° C. The thermoplastic coating may also contain inorganic pigments, for example precipitated calcium carbonate (PCC), ground natural calcium carbonate, or kaolin or other clays, and/or a starch binder. Embossing is preferably carried out directly on the thermoplastic coating by means of a holographically engraved shim.
Abstract:
The present invention encompasses compounds of Formula I: or pharmaceutically acceptable salts or hydrates thereof, which are useful as selective glucocorticoid receptor ligands for treating a variety of autoimmune and inflammatory diseases or conditions. Pharmaceutical compositions and methods of use are also included.
Abstract:
Paper coated uniformly with discrete dots of remoistenable adhesive, especially based on starch or polyvinyl alcohol, has curl stability comparable with particle gum coated papers. Preferably, the dots are less than 0.3 mm in diameter and typically spaced 0.5 to 1 mm (centers) apart. The product is made by screen coating dots of aqueous adhesive mix onto base paper.
Abstract:
In a process for the production of microcapsules containing a liquid fill material, a dispersion-stabilizing species is produced in an aqueous acidic medium by interaction of a melamine formaldehyde precondensate and a water soluble polymer, neither of which alone is dispersion stabilizing with respect to the liquid fill material, and the precondensate is condensed by acid catalysis to produce a condensate which separates from solution and enwraps the liquid fill material to produce microcapsules.