Abstract:
Apparatus and methods for positioning and securing anchors are disclosed herein. The anchors are adapted to be delivered and implanted into or upon tissue, particularly tissue within the gastrointestinal system of a patient. The anchor is adapted to slide uni-directionally over suture such that a tissue plication may be cinched between anchors. A locking mechanism either within the anchor itself of positioned proximally of the anchor may allow for the uni-directional translation while enabling the anchor to be locked onto the suture if the anchor is pulled, pushed, or otherwise urged in the opposite direction along the suture. This uni-directional anchor locking mechanism facilitates the cinching of the tissue plication between the anchors and it may be utilized in one or several anchors in cinching a tissue fold.
Abstract:
An endoscopic tissue anchor deployment device includes a handle, an elongated shaft defining an internal lumen, and an end effector attached to the distal end of the elongated shaft. A tissue anchor catheter is removably inserted through the lumen of the elongated shaft, the catheter having a tissue anchor assembly that is deployable from its distal end. In some embodiments, the handle includes a pin and track assembly that defines a series of handle actuation steps corresponding to deployment steps for the deployment device end effector and the tissue anchor catheter. In some embodiments, the handle includes a catheter stop member that prevents movement of the tissue anchor catheter under certain circumstances, and a handle stop member that prevents actuation of the handle under certain circumstances.
Abstract:
Apparatus and methods are provided for forming a gastrointestinal tissue fold by engaging tissue at a first tissue contact point and moving the first tissue contact point from a position initially distal to, or in line with, a second tissue contact point to a position proximal of the second contact point, thereby forming the tissue fold, and extending an anchor assembly through the tissue fold from a vicinity of the second tissue contact point. Adjustable anchor assemblies; as well as anchor delivery systems, shape-lockable guides and methods for endoluminally performing medical procedures, such as gastric reduction, treatment of gastroesophageal reflux disease, resection of lesions, and treatment of bleeding sites; are also provided.
Abstract:
A delivery catheter for a gastric reduction system includes an elongate torqueable tube, a needle translatably disposed within the torqueable tube, an anchor translatably disposed within the needle and a stabilization device for holding a distal tip of the torqueable tube against a tissue wall.
Abstract:
A surgical access device is adapted for performing laparoscopic surgical procedures with multiple instruments passing through the surgical access device and through a single incision in the abdominal wall of a patient with the abdominal cavity pressurized with an insufflation gas. The surgical access device is adapted to provide instrument access to the abdominal cavity for surgical procedures while generally maintaining insufflation pressure in the abdominal cavity. The surgical access device comprises an access pad. The access pad comprises a material formed of a mixture comprising a triblock copolymer, an oil, and a foaming agent. The access pad is adapted to be disposed within an incision within an abdominal wall. The access pad has an external flange and an internal flange integrally formed with the access pad. The external flange is adapted to be disposed external to the abdominal wall in an operative position and the internal flange adapted to be disposed internal to the abdominal wall in the operative position. The access pad is configured to be maintained in the operative position and adapted to form a seal with the abdominal wall. A plurality of openings are formed through the access pad between an external surface and an internal surface of the access pad. The plurality of openings when operatively disposed are in communication with the incision and form working channels between a location external to the abdominal wall and a location internal to the abdominal wall. The access pad is adapted to conform to a surface of an instrument inserted through the working channel. At least a portion of the access pad between the external flange and the internal flange and within the incision between an external surface of the abdominal wall and an internal surface of the abdominal wall is adapted to form an instrument seal with the instrument. Locating the access pad within the incision creates a radially compressive force to provide an axial seal between the access pad and the abdominal wall.
Abstract:
A flexible surgery access and instrument management system includes a base unit and an insertion unit. The base unit provides a platform having a connection mechanism to which the insertion unit is attached. The insertion unit includes an elongated conduit having one or more tubes providing instrument passages, and a connection mechanism adapted to selectively couple with the mating connection mechanism provided on the base unit. The elongated conduit of the insertion unit is preferably steerable. One or more flexible instruments may be inserted through the tubes of the elongated conduit, with the proximal ends of the instruments being attached to the base unit such that the user is able to control and manipulate the instruments.
Abstract:
Apparatus & methods for optimizing anchoring force are described herein. In securing tissue folds, over-compression of the tissue directly underlying the anchors is avoided by utilizing tissue anchors having expandable arms configured to minimize contact area between the anchor and tissue. When the anchor is in its expanded configuration, a load is applied to the anchor until it is optimally configured to accommodate a range of deflections while the anchor itself exerts a substantially constant force against the tissue. Various devices, e.g., stops, spring members, fuses, strain gauges, etc., can be used to indicate when the anchor has been deflected to a predetermined level within the optimal range. Moreover, other factors to affect the anchor characteristics include, e.g., varying the number of arms or struts of the anchor, positioning of the arms, configuration of the arms, the length of the collars, etc.
Abstract:
Needle assemblies for tissue manipulation are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably disposed through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. A needle deployment assembly is deployable through the tissue manipulation assembly via a handle assembly, through the tubular member, and into or through tissue. An elongate pusher is translationally disposed within a sheath of the needle deployment assembly and can be urged distally for deploying an anchor assembly from the sheath distal end. The anchor assembly is positioned distally of the pusher within the sheath.
Abstract:
An articulatable, steerable tool guide includes a maneuverable head subassembly, a flexible or rigid insertion tube subassembly, and a handle subassembly. The tool guide defines at least one inner lumen extending through the length of the tool guide, with each such lumen being adapted to receive a flexible endoscopic medical device.
Abstract:
An endoscopic system includes a sheath having a flexible sheath body. A tip is attached to a distal end of the sheath body. A handle is attached to the proximal end of the sheath body. A steerable section may be provided in the sheath adjacent to the tip. Steering controls may then be provided on the handle for steering the steerable section. Lumens extend from the tip to the handle. The distal end of each lumen is sealed to the tip. Bodily fluids can only enter into the lumens and not other areas within the sheath. A shapelock assembly has an elongated hollow body positionable within the sheath body. The shapelock body may be switched between generally rigid and flexible conditions. The sheath provides a sterile barrier around the shapelock body. The shapelock assembly can be readily reused and the sheath may be disposable.