Abstract:
The present invention relates to a novel process for the preparation of high purity ziprasidone and pharmaceutically acceptable acid addition salts of ziprasidone; and solvates and hydrates thereof using novel intermediates and a purification method for ziprasidone and pharmaceutically acceptable acid addition salts of ziprasidone; and solvates and hydrates thereof.Thus, 1-(1,2-benzisothiazol-3-yl)piperazine is silylated with trimethylsilylchloride in methylene chloride in the presence of triethylamine and the solvent is distilled off to obtain silylated 1-(1,2-benzisothiazol-3-yl)piperazine. The silylated compound is reacted with 5-(2-chloroethyl)-6-chloro-oxindole in the presence of sodium carbonate to obtain ziprasidone.
Abstract:
A virtual address is configured. A destination address and a capability information associated with each destination entity of a set of destination entities associated with a destination party are configured. Each destination entity from the set of destination entities is a push-capable, text-message-capable entity. Each destination entity from the set of destination entities is associated with a virtual address. The virtual address defines a destination remote from the destination party and remote from premises associated with the destination party.
Abstract:
In a method for managing quality of service (QoS) resources during handoff across communication systems having different grades of QoS awareness, an access terminal (AT) determines that handoff has occurred from a QoS unaware system to a QoS aware system. The AT also determines whether there are any allocated, unrequested QoS resources. If one or more allocated, unrequested QoS resources are identified, the AT requests that the QoS aware system release the one or more allocated, unrequested QoS resources. The AT also determines whether there are any requested, unallocated QoS resources. If one or more requested, unallocated QoS resources are identified, the AT requests that the QoS aware system allocate the one or more requested, unallocated QoS resources to the application.
Abstract:
A clock network for an integrated circuits includes a first set of lines configured to distribute clock signals to a first section of the integrated circuit. The clock network also includes a second set of lines configured to distribute clock signals to a second section of the integrated circuit separately from the first section of the integrated circuit.
Abstract:
A programmable logic device architecture including tristate structures. The programmable logic device architecture provides tristate structures which may be logically or programmably controlled, or both. Through these tristate structures, the logic elements may be coupled to the programmable interconnect, where they may be coupled with other logic elements of the programmable logic device. Using these tristate structures, the signal pathways of the architecture may be dynamically reconfigured.
Abstract:
An apparatus for use in a motor vehicle. The apparatus includes a lower mounting bracket and an upper mounting bracket. The upper mounting bracket is mounted between the lower mounting bracket and an instrument panel of the motor vehicle. A steering column is mounted to the lower mounting bracket. A brake pedal having a brake pedal shaft is coupled to the lower mounting bracket. A clutch pedal having a clutch pedal shaft is coupled to the lower mounting bracket.
Abstract:
A programmable logic device architecture incorporating a peripheral overflow bus is disclosed. In a preferred embodiment, the programmable logic device has a core region that includes at least a plurality of logic cells interconnected by way of associated programmable logic cell conductors. The interconnected logic cells form an array suitable for use in implementing desired logic functions. The programmable logic device also has a peripheral region. The peripheral region includes at least a plurality of bi-directional ports of which selected ones may be coupled to external circuitry. The peripheral region also includes a bi-directional peripheral I/O overflow bus suitably arranged to pass a plurality of control signals and a plurality of data signals between the core region and the plurality of bi-directional ports.
Abstract:
An energy absorbing occupant restraint system for a motor vehicle includes a load-limiting buckle assembly. The buckle assembly includes a first elongated member adapted to be secured to the floor of the motor vehicle and a second elongated member. The buckle assembly further includes a buckle attached to the first elongated member. The buckle is adapted to releasably engage a tongue assembly carried by a seat belt webbing. A connector member interconnects the first and second elongated members. The second elongated member is configured so as to incrementally allow the second elongated member to translate relative to the first elongated member when the first elongated member is acted upon by a load which exceeds a predetermined level. In the preferred embodiment, the second elongated member is a sleeve member which telescopically receives the first elongated member. The sleeve member has an elongated aperture with a plurality of deflectable tangs which resist deflection until acted upon by a predetermined load.
Abstract:
A system (100) for distributing a clock signal to many points on an integrated circuit. The system includes using a delay lock loop with specific digital circuits to accomplish the phase error detection and delay element selection. In one embodiment, two flip-flops are used to detect a phase error. In another embodiment, both macro (202) and micro phase detectors (218) are used and the delay element selection is performed in two stages by using a shift register (210) in a first stage and a counter (220) in a second stage. Another feature of the present invention is, the ability to distribute the reference clock or a synchronized clock to different portions of the circuitry on an integrated circuit. Multiple clock distribution systems are provided which may be selected.
Abstract:
A hierarchical interconnect structure between logic elements, logic array blocks and global interconnects in a programmable logic device is disclosed. The present invention provides a first group of local interconnect lines that couple to outputs of more than one logic element in a block, and a second group of local interconnect lines that are divided into independent segments coupled to a subset of the logic elements in a block. By eliminating the one-to-one correspondence between the number of logic elements in a logic array block and the number of local interconnect wires, the present invention makes possible the inclusion of more logic element in one block in an area efficient manner.