Abstract:
A synthetic representation of a robot tool for display on a user interface of a robotic system. The synthetic representation may be used to show the position of a view volume of an image capture device with respect to the robot. The synthetic representation may also be used to find a tool that is outside of the field of view, to display range of motion limits for a tool, to remotely communicate information about the robot, and to detect collisions.
Abstract:
The present disclosure relates to an inertia measurement module for an unmanned aircraft, which comprises a housing assembly, a sensing assembly and a vibration damper. The vibration damper comprises a first vibration-attenuation cushion; and the sensing assembly comprises a first circuit board, a second circuit board and a flexible signal line for connecting the first circuit board and the second circuit board. An inertia sensor is fixed on the second circuit board, and the first circuit board is fixed on the housing assembly. The inertia measurement module further comprises a weight block, and the second circuit board, the weight block, the first vibration-attenuation cushion and the first circuit board are bonded together. The present disclosure greatly reduces the influence of the operational vibration frequency of the unmanned aircraft on the inertia sensor and improves the measurement stability of the inertia sensor.
Abstract:
The present disclosure relates to calibration assemblies and methods for use with an imaging system, such as an endoscopic imaging system. A calibration assembly includes: an interface for constraining engagement with an endoscopic imaging system; a target coupled with the interface on as to be within the field of view of the imaging system, the target including multiple of markers having calibration features that include identification features; and a processor configured to identify from first and second images obtained at first and second relative spatial arrangements between the imaging system and the target, respectively, at least some of the markers from the identification features, and using the identified markers and calibration feature positions within the images to generate calibration data.
Abstract:
A local contrast enhancement method transforms a first plurality of color components of a first visual color image into a modified brightness component by using a first transformation. The first plurality of color components are in a first color space. The modified brightness component is a brightness component of a second color space. The second color space also includes a plurality of chromatic components. The method transforms all the color components of the first color space into the chromatic components of the second color space. The method then transforms the modified brightness component and the chromatic components of the second color space into a plurality of new color components, in the first color space, of a second visual color image. The method transmits the plurality of new color components to a device such as a display device. The second visual color image has enhanced contrast in comparison to the first visual color image.
Abstract:
In a minimally invasive surgical system, a hand tracking system tracks a location of a sensor element mounted on part of a human hand. A system control parameter is generated based on the location of the part of the human hand. Operation of the minimally invasive surgical system is controlled using the system control parameter. Thus, the minimally invasive surgical system includes a hand tracking system. The hand tracking system tracks a location of part of a human hand. A controller coupled to the hand tracking system converts the location to a system control parameter, and injects into the minimally invasive surgical system a command based on the system control parameter.
Abstract:
The present disclosure relates to calibration assemblies and methods for use with an imaging system, such as an endoscopic imaging system. A calibration assembly includes: an interface for constraining engagement with an endoscopic imaging system; a target coupled with the interface so as to be within the field of view of the imaging system, the target including multiple of markers having calibration features that include identification features; and a processor configured to identify from first and second images obtained at first and second relative spatial arrangements between the imaging system and the target, respectively, at least some of the markers from the identification features, and using the identified markers and calibration feature positions within the images to generate calibration data.
Abstract:
A method handsoff a terminal to a femtocell in a wireless communication system. The method includes, upon generation of a request for handoff to the femtocell, selecting, by a second server, at least one femtocells located within a predetermined distance from a source base station as candidate femtocells for the handoff, according to a request of a first server which functions as a femtocell gateway, receiving, by the first server, a response message comprising information of the candidate femtocells from the second server, sending, by the first server, a message requesting measurement of a reverse signal strength of a terminal under the handoff to the candidate femtocells, determining, by the first server, a destination femtocell for the handoff among the candidate femtocells based on the measurement result reported from the candidate femtocells, and executing a handoff procedure to the destination femtocell from the source base station.
Abstract:
A solar energy receiver array comprises a plurality of solar energy receivers arranged in an X by Y array. A protected housing includes a plurality of sides defining an opening therein. The plurality of solar energy receivers are arranged in the X by Y array may be lowered into the opening within the protective housing to protect the plurality of solar energy receivers arranged in the X by Y array from external winds.
Abstract:
A unified approach, a fusion technique, a space-time constraint, a methodology, and system architecture are provided. The unified approach is to fuse the outputs of monocular and stereo video trackers, RFID and localization systems and biometric identification systems. The fusion technique is provided that is based on the transformation of the sensory information from heterogeneous sources into a common coordinate system with rigorous uncertainties analysis to account for various sensor noises and ambiguities. The space-time constraint is used to fuse different sensor using the location and velocity information. Advantages include the ability to continuously track multiple humans with their identities in a large area. The methodology is general so that other sensors can be incorporated into the system. The system architecture is provided for the underlying real-time processing of the sensors.
Abstract:
Methods of and a system for providing a visual representation of force information in a robotic surgical system. A real position of a surgical end effector is determined. A projected position of the surgical end effector if no force were applied against the end effector is also determined. Images representing the real and projected positions are output superimposed on a display. The offset between the two images provides a visual indication of a force applied to the end effector or to the kinematic chain that supports the end effector. In addition, tissue deformation information is determined and displayed.