Abstract:
A portable electronic device may have a clip. The clip may be mounted to a housing using hinge structures. The hinge structures may bias the clip towards a closed position. The clip may be opened to attach the portable electronic device to an object. When in the closed position, the clip may lie flush with the exterior of the device housing. Clip biasing may be provided using a torsion spring, a coil spring, a ribbon spring, a clip with built-in biasing, a tension spring, or a compression spring. A coupling mechanism may be used to attach the clip to the housing. The coupling mechanism may include a ratcheting rotatable mechanism, a fixed attachment structure, a flexible attachment structure, a removable structure, or a structure that includes a spring bias adjustment mechanism. The device may have a button with a touch sensor array.
Abstract:
A housing for an electronic device, including an aluminum layer enclosing a volume that includes a radio-frequency (RF) antenna is provided. The housing includes a window aligned with the RF antenna; the window including a non-conductive material filling a cavity in the aluminum layer; and a thin aluminum oxide layer adjacent to the aluminum layer and to the non-conductive material; wherein the non-conductive material and the thin aluminum oxide layer form an RF-transparent path through the window. A housing for an electronic device including an integrated RF-antenna is also provided. A method of manufacturing a housing for an electronic device as described above is provided.
Abstract:
An electronic device including a processor, at least one sensor in communication with the processor, wherein the processor is configured to determine an orientation of the device and drop event based on input from the at least one sensor. The electronic device further includes a motor in communication with the processor and a mass operably connected to the motor. The processor is configured to drive the motor when a drop event is determined and the mass is configured to rotate with respect to the motor to alter the orientation of the device.
Abstract:
A portable electronic device may have a clip. The clip may be mounted to a housing using hinge structures. The hinge structures may bias the clip towards a closed position. The clip may be opened to attach the portable electronic device to an object. When in the closed position, the clip may lie flush with the exterior of the device housing. Clip biasing may be provided using a torsion spring, a coil spring, a ribbon spring, a clip with built-in biasing, a tension spring, or a compression spring. A coupling mechanism may be used to attach the clip to the housing. The coupling mechanism may include a ratcheting rotatable mechanism, a fixed attachment structure, a flexible attachment structure, a removable structure, or a structure that includes a spring bias adjustment mechanism. The device may have a button with a touch sensor array.
Abstract:
The embodiments described herein relate to anodic films and methods for forming anodic films. The methods described can be used to form anodic films that have a white appearance. Methods involve positioning reflective particles on or within a substrate prior to or during an anodizing process. The reflective particles are positioned within the metal oxide of the resultant anodic film but substantially outside the pores of the anodic film. The reflective particles scatter incident light giving the resultant anodic film a white appearance.
Abstract:
The embodiments described herein relate to anodic films and methods for forming anodic films. The methods described can be used to form anodic films that have a white appearance. Methods involve positioning reflective particles on or within a substrate prior to or during an anodizing process. The reflective particles are positioned within the metal oxide of the resultant anodic film but substantially outside the pores of the anodic film. The reflective particles scatter incident light giving the resultant anodic film a white appearance.
Abstract:
The embodiments described herein relate to forming anodized films that have a white appearance. In some embodiments, an anodized film having pores with light diffusing pore walls created by varying the current density during an anodizing process is described. In some embodiments, an anodized film having light diffusing micro-cracks created by a laser cracking procedure is described. In some embodiments, a sputtered layer of light diffusing aluminum is provided below an anodized film. In some embodiments, light diffusing particles are infused within openings of an anodized layer.
Abstract:
The embodiments described herein relate to forming anodized films that have a white appearance. In some embodiments, an anodized film having pores with light diffusing pore walls created by varying the current density during an anodizing process is described. In some embodiments, an anodized film having light diffusing micro-cracks created by a laser cracking procedure is described. In some embodiments, a sputtered layer of light diffusing aluminum is provided below an anodized film. In some embodiments, light diffusing particles are infused within openings of an anodized layer.
Abstract:
Based on a cost function that estimates a value of a confidence level above a confidence threshold using user information, an autonomous control system can determine that a user of a user device is ready for a pickup, identify a pickup location based on the user information, and determine a trajectory from a current location to the pickup location. A propulsion system is configured to cause motion current location toward the pickup location according to the trajectory.
Abstract:
A housing of an electronic device includes a substrate defining an external surface and internal surface of the housing, at least one sidewall extending from the substrate, and abrasion-resistant members at least partly embedded in the substrate and extending beyond the external surface. The abrasion-resistant members may be formed from metal or ceramic. The substrate comprises a moldable matrix. The abrasion-resistant members are harder than the moldable matrix.