Abstract:
Glucagon antagonists are provided which comprise amino acid substitutions and/or chemical modifications to glucagon sequence. In one embodiment, the glucagon antagonists comprise a native glucagon peptide that has been modified by the deletion of the first two to five amino acid residues from the N-terminus and (i) an amino acid substitution at position 9 (according to the numbering of native glucagon) or (ii) substitution of the Phe at position 6 (according to the numbering of native glucagon) with phenyl lactic acid (PLA). In another embodiment, the glucagon antagonists comprise the structure A-B-C as described herein, wherein A is PLA, an oxy derivative thereof, or a peptide of 2-6 amino acids in which two consecutive amino acids of the peptide are linked via an ester or ether bond.
Abstract:
Disclosed is a semiconductor device having a p-n junction with reduced junction leakage in the presence of metal silicide defects that extend to the junction and a method of forming the device. Specifically, a semiconductor layer having a p-n junction is formed. A metal silicide layer is formed on the semiconductor layer and a dopant is implanted into the metal silicide layer. An anneal process is performed causing the dopant to migrate toward the metal silicide-semiconductor layer interface such that the peak concentration of the dopant will be within a portion of the metal silicide layer bordering the metal silicide-semiconductor layer interface and encompassing the defects. As a result, the silicide to silicon contact is effectively engineered to increase the Schottky barrier height at the defect, which in turn drastically reduces any leakage that would otherwise occur, when the p-n junction is in reverse polarity.
Abstract:
This invention relates to an apparatus, comprising: a plurality of plates in a stack defining at least one process layer and at least one heat exchange layer, each plate having a peripheral edge, the peripheral edge of each plate being welded to the peripheral edge of the next adjacent plate to provide a perimeter seal for the stack, the ratio of the average surface area of each of the adjacent plates to the average penetration of the weld between the adjacent plates being at least about 100 cm2/mm. The stack may be used as the core assembly for a microchannel processor. The microchannel processor may be used for conducting one or more unit operations, including chemical reactions such as SMR reactions.
Abstract:
Disclosed are a method and apparatus for embedding or detecting watermarks in a text, which belong to the field of document protection. The method and apparatus overlay an additional layer of shade in a document for recording a large amount of information from watermarks. The shade comprises the dots arranged under certain rules. Shifts of the dots record each bit string within the watermark. According to the method and apparatus, a large amount of information can be embedded and the watermarks embedded in the shade are dispersed together with the document which can be digitized by a scanner for being detected.
Abstract:
A MEMS three-axis accelerometer includes a silicon substrate, a first electrode and a second electrode etched in the same silicon substrate. The first electrode is constituted by a mobile mass fitted with a plurality of mobile fingers extending laterally. The second electrode is composed of two conductive parts located on two opposite sides of the mobile mass. Each conductive part comprises a plurality of fixed fingers formed parallel to the mobile fingers. Each mobile finger is positioned between two contiguous fixed fingers to cooperatively form a microstructure with interdigital combs. The mobile mass is connected to the substrate by a spring.
Abstract:
A high-k metal gate electrode is formed with reduced gate voids. An embodiment includes forming a replaceable gate electrode, for example of amorphous silicon, having a top surface and a bottom surface, the top surface being larger than the bottom surface, removing the replaceable gate electrode, forming a cavity having a top opening larger than a bottom opening, and filling the cavity with metal. The larger top surface may be formed by etching the bottom portion of the amorphous silicon at greater temperature than the top portion, or by doping the top and bottom portions of the amorphous silicon differently such that the bottom has a greater lateral etch rate than the top.
Abstract:
In one embodiment, a method of forming a semiconductor device is provided that includes providing a gate structure on a semiconductor substrate. Sidewall spacers may be formed adjacent to the gate structure. A metal semiconductor alloy may be formed on the upper surface of the gate structure and on an exposed surface of the semiconductor substrate that is adjacent to the gate structure. An upper surface of the metal semiconductor alloy is converted to an oxygen-containing protective layer. The sidewall spacers are removed using an etch that is selective to the oxygen-containing protective layer. A strain-inducing layer is formed over the gate structure and the semiconductor surface, in which at least a portion of the strain-inducing layer is in direct contact with the sidewall surface of the gate structure. In another embodiment, the oxygen-containing protective layer of the metal semiconductor alloy is provided by a two stage annealing process.
Abstract:
The present invention includes methods and apparatuses for producing hydrogen peroxide using microchannel technology. An exemplary process for producing hydrogen peroxide comprises flowing feed streams into intimate fluid communication with one another within a process microchannel to form a reactant mixture stream comprising a hydrogen source and an oxygen source such as, without limitation, hydrogen gas and oxygen gas. Thereafter, a catalyst is contacted by the reactant mixture and is operative to convert a majority of the reactant mixture to hydrogen peroxide that is withdrawn via an egressing product stream. During the hydrogen peroxide chemical reaction, exothermic energy is generated and absorbed by the fluid within the microchannel as well as the microchannel itself.
Abstract:
Disclosed is a method for printing an image, comprising a step of rasterizing an image to be printed in view of a first resolution to generate a first data bitmap; a step of splitting the first data bitmap according to a ratio of the first resolution to a second resolution to generate second data bitmaps; and a step of outputting the second data bitmaps to a printer with the second resolution for printing. Disclosed is also a device for printing images. The method and device for printing an image may solve the problem in the prior art that the definition of an image printed from a printer is too low and improve the definition of an image printed from a printer.
Abstract:
Provided is a process and device for exchanging heat energy between three or more streams in a microchannel heat exchanger which can be integrated with a microchannel reactor to form an integrated microchannel processing unit. The combining of a plurality of integrated microchannel devices to provide the benefits of large-scale operation is enabled. In particular, the microchannel heat exchanger enables flexible heat transfer between multiple streams and total heat transfer rates of about 1 Watt or more per core unit volume expressed as W/cc.