ROADWAY/TUNNEL EXCAVATION ROBOT AND AUTOMATIC CUTTING CONTROL METHOD

    公开(公告)号:US20240141784A1

    公开(公告)日:2024-05-02

    申请号:US18031869

    申请日:2022-09-30

    CPC classification number: E21D9/108 E21D9/003 E21D9/1066 E21D9/1093

    Abstract: Disclose are a roadway/tunnel excavation robot and an automatic cutting control method. The robot includes a rack, a moving platform, a supporting and stabilizing mechanism, a milling mechanism, a telescoping mechanism, an inclined cutting feed adjusting mechanism, a horizontal swinging mechanism, a lifting mechanism and a controller. The milling mechanism includes a drive unit, a milling shaft, an eccentric rotary casing, a high-pressure jet nozzle unit, a tension and compression sensor and a direction sensor. Through the deflection of a center line of an inner hole of the eccentric rotary casing, the milling mechanism drives a milling cutter head to carry out a rotational oscillation motion for rock breaking; and the milling cutter head is in discontinuous contact with a rock mass. The telescoping mechanism, the inclined cutting feed adjusting mechanism, the lifting mechanism and the horizontal swinging mechanism are controlled such that the milling mechanism performs coal rocks milling.

    ATTITUDE SELF-CORRECTING UNDERGROUND TRANSPORTATION APPARATUS BASED ON UWB TECHNOLOGY AND CONTROL METHOD THEREOF

    公开(公告)号:US20230349295A1

    公开(公告)日:2023-11-02

    申请号:US18013908

    申请日:2022-08-31

    CPC classification number: E21F13/00 B60P7/06

    Abstract: The present application relates to an attitude self-correcting underground transportation apparatus based on UWB technology and a control method thereof. A transport clamping and fastening mechanism is mounted on an upper surface of an upper platform part of a six-degree-of-freedom motion platform. An attitude perception and sensing set at least includes three UWB tags, the UWB tags in the attitude perception and sensing set being evenly distributed on the side of the upper platform part of the six-degree-of-freedom motion platform. A control module is configured to send an electric signal to drive the six-degree-of-freedom motion platform and the transport clamping and fastening mechanism to grip an object to be transported, collect positioning information of the attitude perception and sensing set, calculate the attitude of the six-degree-of-freedom motion platform in real time, and perform attitude adjustment with reference to an expected position and attitude to maintain a smooth transportation process.

    ENVIRONMENTAL MONITORING APPARATUS AND METHOD FOR MINE TUNNELING ROBOT

    公开(公告)号:US20230127366A1

    公开(公告)日:2023-04-27

    申请号:US17996664

    申请日:2022-01-17

    Abstract: An apparatus includes a current excitation source, a roadheader telescopic protection cylinder, an electric rotating apparatus, auxiliary cutting teeth, a cutting head entity, a transmission shaft, an optical fiber ring protective housing, an optical fiber ring, an optical fiber current sensor control unit and a recovery electrode. The apparatus transmits an auxiliary current Ie and a monitoring current Id to a coal seam. The auxiliary current Ie and the monitoring current Id are homologous currents that are incompatible, and the auxiliary current Ie squeezes the monitoring current Id, so the monitoring current Id monitors the environment of the coal seam. The monitoring current Id flows to the coal seam as, and a return current If flows through the transmission shaft and a roadheader expansion part. The optical fiber ring measures the return current If, when the roadheader is heading forward and encounters abnormal geological bodies.

    FRICTIONAL FORCE MONITORING SYSTEM FOR MIDDLE TROUGHS OF SCRAPER CONVEYOR

    公开(公告)号:US20220073283A1

    公开(公告)日:2022-03-10

    申请号:US17418853

    申请日:2019-11-26

    Abstract: A frictional force monitoring system for middle troughs of a scraper conveyor, comprising a scraper conveyor system and a sensing detection system. The scraper conveyor system consists of a machine body, middle troughs, thrust lugs, scrapers, a double chain, a sprocket, a speed reducer, an electric motor and a frequency converter. The sensing monitoring system consists of force receiving modules, a three-dimensional force sensor, and a pre-embedded temperature sensor. The frictional force monitoring system is able to monitor impact loads, frictional forces, friction coefficients, temperature, etc. between an annular chain, coal bulk, and middle troughs of the scraper conveyor under complex and severe operating conditions, and to provide the technical means for the design, safety early-warning and health evaluation of the scraper conveyor, and can provide a data basis for studying friction wear and fatigue breaking mechanism of middle troughs of a scraper machine.

    COAL MINE ADVANCED DETECTION METHOD FOR HEADING MACHINE

    公开(公告)号:US20210247343A1

    公开(公告)日:2021-08-12

    申请号:US17264412

    申请日:2020-03-13

    Abstract: When the heading machine tunnels, a current generated by a current excitation source enters a coal seam through a movable cutting pick to form a stray current. The stray current collected by a backflow net returns to a negative electrode of a power supply through a transition resistor. When information such as the water content of the coal seam changes, the stray current and a potential difference across the transition resistor also accordingly change, and the coal seam water content information is converted into an electric signal. When the potential difference across the transition resistor is applied to two ends of a piezoelectric ceramic, the piezoelectric ceramic extends or compresses, and the electric signal is converted into a strain signal. A sensing optical fiber converts the strain signal into an optical signal detectable by a photoelectric detector. The optical signal is analyzed to obtain the coal seam water content information.

    HOISTING CONTAINER POSE CONTROL METHOD OF DOUBLE-ROPE WINDING TYPE ULTRA-DEEP VERTICAL SHAFT HOISTING SYSTEM

    公开(公告)号:US20210070586A1

    公开(公告)日:2021-03-11

    申请号:US16772162

    申请日:2019-09-12

    Abstract: The present invention discloses a hoisting container pose control method of a double-rope winding type ultra-deep vertical shaft hoisting system. The method comprises the following steps of step 1, building a mathematical model of a double-rope winding type ultra-deep vertical shaft hoisting subsystem; step 2, building a position closed-loop mathematical model of an electrohydraulic servo subsystem; step 3, outputting a flatness characteristics of a nonlinear system; step 4, designing a pose leveling flatness controller of a double-rope winding type ultra-deep vertical shaft hoisting subsystem; and step 5, designing a position closed-loop flatness controller of the electrohydraulic servo subsystem. The present invention has the advantages that a system state variable derivation process is omitted, so that a design process of the controllers is greatly simplified. The response time of the controllers can be shortened, and a hoisting container can fast reach a leveling state. In an application process of the system, sensor measurement noise and system non-modeling characteristics can be amplified through state variable derivation, so that tracking errors can be reduced through design of the flatness controller. A control process is more precise, and good control performance is ensured.

Patent Agency Ranking