Abstract:
An intelligent reliability evaluation and service life prediction method for a kilometer deep well hoist brake, the method including: the establishment of a digital twin model for a hoist brake, data acquisition and synchronization, and reliability evaluation and service life prediction, wherein the digital twin model for the hoist brake can accurately reflect actual physical characteristics of the hoist brake, the data acquisition and synchronization can realize real-time mapping between a physical entity of the hoist brake and the digital twin model therefor, and furthermore, on the basis of the digital twin model for the hoist brake, the reliability evaluation and service life prediction are realized. Digital twin technology is combined with a reliability analysis method, so that real-time updating of reliability evaluation and service life prediction of the hoist brake are realized.
Abstract:
A hoist main shaft torque monitoring device based on angle measurement, constituted primarily by a first base, a second base, a light generating unit, a shutter, and a light sensing element; the light source, a first lens, and a first optical aperture arranged in the light generating unit, as well as a second optical aperture, second lens, and light sensing element on the shutter, forming a light source generation, propagation, and reception pathway; when the elevator main shaft is subjected to a certain torque, a corresponding displacement is produced between the first optical aperture and the second optical aperture, thus measuring the change in amount of light ultimately reaching the second optical aperture so as to measure the twist angle of the rotary shaft and finally calculate the magnitude of the shaft torque. Without damaging the original equipment and foundation, the device measures the torque of the shaft at different rotational speeds. The device can measure stationary torque and torque at different rotational speeds of the shaft, without the electromagnetic field interfering with wireless transmission; the device is easy to use, maintenance costs are low, and it is of interest for widespread popularization.
Abstract:
The present disclosure belongs to the technical field of mining equipment, and in particular related to an automatic driving system of a monorail hoist driven based on a digital twin and a method thereof. The system includes a railroad switch sensor module, a positioning system module, a data transferring system, an intelligent control system, a digital twin system and an automatic driving module. The railroad switch sensor module is configured to sense the connection-position state of a movable track in a monorail hoist railroad switch track. The data transferring system is configured to transmit the data on the surface and underground. A bidirectional transmission is performed between the intelligent control system and the railroad switch sensor module, a bidirectional transmission is performed between the intelligent control system and the positioning system module, and a bidirectional transmission is performed between the digital twin system and the intelligent control system.
Abstract:
A series-parallel monorail hoist based on an oil-electric hybrid power and a controlling method thereof. The monorail hoist includes a cabin, a hydraulic driving system, a lifting beam, a gear track driving and energy storage system, and a speed adaptive control system connected in series with each other and travelling on a track. The monorail hoist is capable of implementing an independent drive by an electric motor or a diesel engine in an endurance mode, a hybrid drive of the electric motor and the diesel engine in a transportation mode, and a hybrid drive of the diesel engine and a flywheel energy storage system in a climbing mode, according to different operating conditions that include conditions of an upslope, a downslope and a load. Power requirements for the monorail hoist under various operating conditions are satisfied, and the excess energy is recovered during the process of travelling.
Abstract:
The present invention discloses a hoisting container pose control method of a double-rope winding type ultra-deep vertical shaft hoisting system. The method comprises the following steps of step 1, building a mathematical model of a double-rope winding type ultra-deep vertical shaft hoisting subsystem; step 2, building a position closed-loop mathematical model of an electrohydraulic servo subsystem; step 3, outputting a flatness characteristics of a nonlinear system; step 4, designing a pose leveling flatness controller of a double-rope winding type ultra-deep vertical shaft hoisting subsystem; and step 5, designing a position closed-loop flatness controller of the electrohydraulic servo subsystem. The present invention has the advantages that a system state variable derivation process is omitted, so that a design process of the controllers is greatly simplified. The response time of the controllers can be shortened, and a hoisting container can fast reach a leveling state. In an application process of the system, sensor measurement noise and system non-modeling characteristics can be amplified through state variable derivation, so that tracking errors can be reduced through design of the flatness controller. A control process is more precise, and good control performance is ensured.
Abstract:
A reliability robust design method for multiple failure modes of an ultra-deep well hoisting container, including: defining randomness of a structural parameter, a material property, and a dynamic load of a hoisting container, and solving a random response of a structural failure for a random parameter using a design of experiment method; establishing reliability performance functions of each failure modes in accordance with failure criterion of the hoisting container; establishing a joint probability model of correlated failures using a copula theory in consideration of probability correlation between the failure modes; establishing, a system reliability model with failure correlation of the hoister container; establishing a sensitivity model concerning each random parameter for system reliability of the hoisting container; and establishing, in conjunction with an optimization design model, a reliability robust optimization design model for the hoisting container using a joint failure probability and parameter sensitivity as constraints.
Abstract:
The present disclosure belongs to the technical field of mining equipment, and in particular related to an automatic driving system of a monorail hoist driven based on a digital twin and a method thereof. The system includes a railroad switch sensor module, a positioning system module, a data transferring system, an intelligent control system, a digital twin system and an automatic driving module. The railroad switch sensor module is configured to sense the connection-position state of a movable track in a monorail hoist railroad switch track. The data transferring system is configured to transmit the data on the surface and underground. The method applies the digital twin technology to the automatic driving in the monorail hoist, reduces the input of personnel in the mine, and avoids safety accidents caused by irregular management or improper operation of the driver, through the deploying of the automatic driving module for the monorail hoist.
Abstract:
Disclosed are an online monitoring system for a crack on a hoist spindle and an operation method thereof. The system comprises: a rope power part, a crack detection part, a wireless transmission part, and a computer. The rope power part comprises two traction ropes, two guide wheels, two stepper motors, and two stepper motor drivers. The crack detection part comprises a spiral tube guide rail, a sliding body, and an ultrasonic generator. The wireless transmission part comprises three zigbee wireless sensing modules. The zigbee wireless sensing modules receive instructions from the computer and transmit the instructions to the stepper motor drivers to control the motors to rotate. The stepper motors drive the guide wheels to rotate to realize the winding of the ropes, so as to pull the sliding body to slide on the spiral tube guide rail. The ultrasonic generator clamped on the sliding body monitors the rotating spindle along the spiral tube guide rail. The zigbee wireless sensing modules transmit the detected data to the computer in real time. The present invention can effectively monitor a hoist spindle in time before a failure occurs, thereby avoiding safety accidents.
Abstract:
The present invention discloses an embedded scraper rotation angle detection device for a scraper conveyor and a detection method. The detection device includes two extensible detection devices, two signal detection units and a remote processing unit. The two extensible detection devices and the two signal detection units are disposed at two ends of a scraper respectively. The signal detection units detect movement displacements of the extensible detection devices in real time and send out signals through wireless transmission modules, the wireless transmission modules and a wireless receiving module are used for data transmission, and a signal display processing module is used to calculate a rotation angle value of the scraper in real time, output and display the rotation angle value simultaneously, compare the rotation angle value measured in real time with a set safety threshold, and send out an alarm indication when the rotation angle value exceeds the safety threshold.
Abstract:
A large-tonnage coal dropping buffer skip for a mine is disclosed. A loading skip box (14) is installed at the top of a large-tonnage skip (12), a coal dropping buffer device (13) is arranged on the inner sidewall of the large-tonnage skip (12), and the coal dropping buffer device (13) includes: a frame (1) fixedly connected with the inner sidewall of the large-tonnage skip (12); a lining plate guide frame (6) connected with the frame (1) through shock absorbers (2), guide sliding grooves being formed in the lining plate guide frame (6); a lining plate support (4) slidably nested in the guide sliding grooves in the lining plate guide frame (6), hoisting lugs (9) for hoisting being arranged at the top end of the lining plate support (4); and a lining plate (5) detachably connected with the lining plate support (4) through fasteners (7).