Abstract:
Various systems, methods, and apparatuses disclosed herein provide for receiving pressure data for an accumulator system, the pressure data providing an indication of a pressure in an accumulator tank of the accumulator system; receiving energy data, the energy data indicating an availability of free energy for use to charge the accumulator tank; and activating a charging source of the accumulator tank to charge the accumulator tank based on at least one of the pressure data and the energy data.
Abstract:
Systems and methods for implementing a start-stop feature on a vehicle powered at least in party by an internal combustion engine are described. The method includes receiving, at an electronic control unit (“ECU”) of the vehicle, an indication that the vehicle is in line at a drive-thru. The method further includes determining, by the ECU, a number of start-stop events anticipated during the drive-thru. The method includes determining, by the ECU, an approximate stop time for each of the number of start-stop events. The method further includes determining, by the ECU, that a battery of the vehicle has enough remaining charge to power a plurality of vehicle components during implementation of the start-stop feature. The method includes implementing, by the ECU, the start-stop feature in which the internal combustion engine is turned off for at least a portion of the time when the vehicle is stopped.
Abstract:
Various systems, methods, and apparatuses disclosed herein provide for receiving pressure data for an accumulator system, the pressure data providing an indication of a pressure in an accumulator tank of the accumulator system; receiving energy data, the energy data indicating an availability of free energy for use to charge the accumulator tank; and activating a charging source of the accumulator tank to charge the accumulator tank based on at least one of the pressure data and the energy data.
Abstract:
System comprising an internal combustion engine including a crankshaft, a crankshaft sprocket coupled to the crankshaft, an electric motor in mechanical communication with the crankshaft sprocket, a bidirectional engine position sensor coupled to the crankshaft sprocket, a controller in electrical communication with the bidirectional engine position sensor and a non-transitory memory having instructions that, in response to execution by a processor, cause the processor to determine a position of an engine component upon shutdown of the engine, store the position of the engine component at shutdown in the non-transitory memory, and control the electric motor at restart in response to the position of the engine component at shutdown are disclosed. Methods are also disclosed.
Abstract:
A system and method for controlling automatic start/stop operations for an engine. While the engine is shutdown, operation of the engine may be automatically started upon expiration of a threshold time limit or in response to one or more adverse or deteriorated conditions of a power storage device, such as, for example, a state of health, state of function, or state of charge of the power storage device. After the engine has been automatically started, the ability of the controller to subsequently automatically stop the operation of the engine may be disabled until at least one secondary condition is satisfied. Upon satisfaction of the at least one secondary condition, the controller may again be enabled to at least automatically stop the operation of the engine.
Abstract:
A system and method for controlling automatic start/stop operations for an engine. While the engine is shutdown, operation of the engine may be automatically started upon expiration of a threshold time limit or in response to one or more adverse or deteriorated conditions of a power storage device, such as, for example, a state of health, state of function, or state of charge of the power storage device. After the engine has been automatically started, the ability of the controller to subsequently automatically stop the operation of the engine may be disabled until at least one secondary condition is satisfied. Upon satisfaction of the at least one secondary condition, the controller may again be enabled to at least automatically stop the operation of the engine.
Abstract:
An apparatus includes an engine friction module in operative communication with an engine and structured to interpret engine operation data indicative of an engine friction amount, and a stop/start module structured to compare the engine operation data with predetermined protective criteria that includes an engine friction threshold and to turn off the engine for at least a portion of time based on the engine friction threshold exceeding the engine friction amount.
Abstract:
you and a Systems and methods for implementing a start-stop feature on a vehicle powered at least in party by an internal combustion engine are described. The method includes receiving, at an electronic control unit (“ECU”) of the vehicle, an indication that the vehicle is in line at a drive-thru. The method further includes determining, by the ECU, a number of start-stop events anticipated during the drive-thru. The method includes determining, by the ECU, an approximate stop time for each of the number of start-stop events. The method further includes determining, by the ECU, that a battery of the vehicle has enough remaining charge to power a plurality of vehicle components during implementation of the start-stop feature. The method includes implementing, by the ECU, the start-stop feature in which the internal combustion engine is turned off for at least a portion of the time when the vehicle is stopped.
Abstract:
Various systems, methods, and apparatuses disclosed herein provide for receiving pressure data for an accumulator system, the pressure data providing an indication of a pressure in an accumulator tank of the accumulator system; receiving energy data, the energy data indicating an availability of free energy for use to charge the accumulator tank; and activating a charging source of the accumulator tank to charge the accumulator tank based on at least one of the pressure data and the energy data.