Abstract:
Disclosed herein is a multilayer film comprising a first layer and a second layer; and a tie layer; where the tie layer is disposed between the first layer and the second layer; the first layer being disposed on a first surface of the tie layer; the second layer being disposed on a second surface of the tie layer; where the second surface is opposedly disposed to the first surface; where the tie layer comprises a crystalline block composite and a carboxylated olefin copolymer.
Abstract:
The present disclosure provides a composition comprising: a) a polypropylene; b) a polyolefin elastomer; and c) a block composite. The polyolefin elastomer has an I10/I2 from greater than 7.5 to 15.0. The composition may optionally include a filler.
Abstract translation:聚烯烃弹性体具有大于7.5至15.0的I 10 / I 2。 组合物可以任选地包括填料。
Abstract:
A comprising includes one or more polyethylene, one or more polypropylene, one or more polyolefin elastomer, and a crystalline block composite having the following three components: (i) a crystalline ethylene based polymer, (ii) a crystalline propylene based polymer, and (iii) a block copolymer having a crystalline ethylene based block and a crystalline propylene block. The composition of component (i) is the same as the crystalline ethylene based block of the block copolymer and the composition of component (ii) is the same as the crystalline propylene block of the block copolymer. The composition is useful for forming rotomolded articles.
Abstract:
The instant invention provides a blend composition suitable for injection molded articles. The blend composition suitable for injection molded article according to the present invention comprises: (a) from 50 to 80 percent by weight of a propylene/α-olefin interpolymer composition; (b) from 5 to 25 percent by weight of a homopolymer polypropylene, a random copolymer polypropylene, clarified random copolymer polypropylene, and combination thereof; and (c) from 5 to 39 percent by weight of a plasticizing agent; wherein said blend composition has a total haze of less than 25 percent.
Abstract:
The present disclosure is directed to an adhesion promoter composition comprising of a solvent and a functionalized olefin block copolymer, and articles with the adhesion promoter composition applied thereto. The adhesion promoter composition can be halogen-free.
Abstract:
The present disclosure relates to a capped, multi- or dual-headed chain composition comprising derivatives of a strained olefin. The present disclosure further relates to a process for synthesizing the capped, multi- or dual-headed composition by using an organometallic compound and a co-catalyst in the presence of a catalyst precursor and a strained olefin. The present disclosure further relates to use of the compositions, as well as the process to make the same, in olefin polymerization.
Abstract:
Semi-crystalline, thermoplastic polyolefin block copolymers comprising: (A) A first polyolefin A block comprising isotactic poly(1-butene) (iPB); (B) A polyolefin B block comprising an ethylene and/or alpha-olefin/1-butene copolymer or terpolymer; and (C) A second polyolefin A block comprising isotactic poly(1-butene) (iPB); the A and B blocks bonded to one another to form a block copolymer in which the first and second polyolefin A blocks are joined to and separated by the polyolefin B block. In one embodiment the polyolefin block copolymer is a BAB block copolymer.
Abstract:
The invention provides functionalized block composites and crystalline block composites. In particular, the invention provides a functionalized olefin-based polymer formed from at least (A) and (B): (A) a crystalline block composite comprising: a block copolymer comprising a propylene-based crystalline block and crystalline ethylene-based block; a propylene-based crystalline polymer; and, a crystalline ethylene-based polymer; and (B) at least one functionalization agent or a functionalized olefin-based polymer formed from at least (A) and (B): (A) a crystalline block composite comprising: a block copolymer comprising a propylene-based crystalline block and crystalline ethylene-based block; a propylene-based crystalline polymer; and, a crystalline ethylene-based polymer; and (B) at least one functionalization agent.
Abstract:
Embodiments relate to a high melt flow thermoplastic polyolefin composition and of a method of preparing a high melt flow thermoplastic polyolefin composition, in which the composition includes from 5 wt % to 45 wt % of a modifier including a blend of from 5 wt % to 40 wt % of a block composite and from 60 wt % to 95 wt % of a polyolefin copolymer, based on a total weight of the modifier, and from 30 wt % to 95 wt % of a polypropylene polymer base that has a melt flow rate of at least 40 g/10 min. The high melt flow thermoplastic polyolefin composition has a blended melt flow rate of at least 25 g/10 min and an MFR ratio is less than 2.0, the MFR ratio being a ratio of the melt flow rate of the polypropylene polymer base to the blended melt flow rate of the high melt flow thermoplastic polyolefin composition.
Abstract:
Disclosed herein is a foam composition comprising an olefin copolymer that comprises ethylene and an α-olefin or propylene and an α-olefin; an ionomer that comprises copolymer of ethylene and a carboxylic acid; where the ionomer is neutralized with a metal ion; a crosslinking agent; and a blowing agent. Disclosed herein is a method of manufacturing a foam composition comprising blending together an olefin copolymer that comprises ethylene and an α-olefin or propylene and an α-olefin; an ionomer that comprises copolymer of ethylene and a carboxylic acid; where the ionomer is neutralized with a metal ion; a crosslinking agent; and a blowing agent to form the foam composition; heating the composition to activate the blowing agent; and crosslinking the composition.