Abstract:
A system includes a processor configured to determine that a high-speed data transfer is desired for a vehicle. The processor is also configured to identify parking, within a predefined distance from a destination location, which overlaps with identified areas of high-speed coverage meeting a predefined speed and display visual indicators of the identified parking, when a vehicle is within a predefined distance from the identified parking.
Abstract:
A computing device includes a camera configured to capture images of an area of a road, the area defining a geofence; and a processor, configured to responsive to detecting a traffic density within the geofence exceeding a predefined threshold, wirelessly broadcast a directional message within the geofence to request vehicles located within the geofence to temporarily disable individual messaging services having low priorities identified in the directional message, analyze vehicle traffic using images captured by the camera to detect a predefined traffic situation, responsive to detecting the predefined traffic situation initiated by one of the vehicles, generate a safety message reflecting the traffic situation, and broadcast the safety message to vehicles within the geofence.
Abstract:
A system includes a processor configured to determine that a first modem, predesignated to provide first communication services, is unable to provide the first communication services. The processor is also configured to determine that the first communication services have priority over second communication services, provided by a second modem predesignated to provide the second communication services. Further, the processor is configured to cease second communication services on the second modem and repurpose the second modem to provide the first communication services, responsive to the priority determination.
Abstract:
A vehicle network selection system may include a vehicle modem configured via rules to connect with a first network but not a second network; and a telematics controller programmed to receive data via the first network at a current throughput, receive an application request from a vehicle application requiring a minimum throughput to perform the request, instruct the modem, in response to the current throughput below the minimum throughput, to enter into an override mode to connect to the second network capable of meeting the minimum throughput.
Abstract:
A system includes a processor configured to determine that a vehicle is in a parked state. The processor is also configured to detect a user device wireless signal, at one or more vehicle antennas. The processor is further configured to determine a primary return vector antenna based on the detected wireless signal and periodically broadcast a vehicle wireless signal from the one or more antennas, wherein if there is more than one antenna, the processor is configured to broadcast the signal more frequently from the primary return vector antenna. A mobile device can act responsively to the received signals, providing an indicator assisting in directional vehicle location.
Abstract:
A system includes a vehicle-based processor configured to store SIM profiles of locally connectable wireless devices on a list in vehicle memory. The processor is also configured to monitor the network signal strengths of different networks associated with different SIM profiles as a vehicle travels and, if the signal strength of the presently connected network drops below a predetermined threshold, automatically select and connect to a different cellular network using an associated stored SIM profile.
Abstract:
A system includes a vehicle modem; a storage maintaining paired device data including phone numbers of mobile devices; and a web server installed to a telematics control unit connected to a vehicle bus. The web server identifies a change in a network address of the vehicle modem, and in response, sends the changed network address to the mobile devices using short message service (SMS) messages addressed to the phone numbers of the mobile devices. A mobile device identifies a web request as including a hostname of a vehicle; accesses a virtual domain name server of the device to determine whether the mobile device locally maintains a network address for the hostname; if so, initiates a web connection to the network address, and if not, initiates the web connection using a network address resolved from the hostname via a remote domain name server.
Abstract:
A system includes a processor configured to detect the presence of a wireless network access point usable for vehicular communication. The processor is also configured to connect to the wireless access point and report connection information relating to the connected wireless access point to an entity capable of establishing direct cellular connection with a vehicle, identifying the connected wireless access point as an alternative communication method if cellular communication is unavailable.
Abstract:
A system includes a processor configured to receive an indication of a trigger state indicating that a message should be broadcast over dedicated short-range communication (DSRC) from a broadcasting vehicle. The processor is also configured to select a message, in response to the trigger state, for broadcast and broadcast the selected message while the trigger state persists.
Abstract:
A system includes a processor configured to receive a desired departure time and route for upcoming travel, from a vehicle computing system. The processor is also configured to determine a traffic level based on the received time for the received route. The processor is further configured to determine a vehicle charge level and recommend a new route or departure time if the vehicle charge level is projected to be sufficient to achieve travel-completion based on the new route or departure time in accordance with the recommendation.