Abstract:
Various devices and methods are provided that use signaling to support advanced wireless receivers. For example, a method includes receiving an input signal at a user equipment. The input signal includes a desired signal and an interfering signal, where the desired signal defines symbols using constellations. The method also includes obtaining information identifying a wireless channel used by the interfering signal and a modulation type used to modulate data in the interfering signal. The method further includes recovering the symbols from the desired signal using the information.
Abstract:
A method for operating a cooperating user equipment (CUE) includes receiving a plurality of video packets that are hierarchically modulated (HM), with each video packet corresponding to a separately encoded video layer that is encoded with a rateless code, and decoding the plurality of video packets. The method also includes generating one or more supplemental packets to assist in the decoding of the plurality of video packets, and transmitting the one or more supplemental packets.
Abstract:
Method and apparatus for decoding a transmitted signal by a receiver in a MIMO system into a first estimate component for estimating a first signal, a first interference component indicating interference resulting from a correlation relationship among a set of signals to be transmitted, and a first noise component. A base station generates the transmitted signal from the set of signals through a coding process, the coding process defining a correlation relationship amongst the set of signals. The correlation information about the correlation relationship is transmitted to the receiver directly or by a dedicated reference symbol. The decoding is performed by determining a linear receiver filter for the first signal in accordance with the correlation information, and de-correlating the first signal and interferences.
Abstract:
Embodiments are provided for transmitting channel information, such as control channel information, using lower resources at the transmitter combined with using apriori information associated with channel information in the decoder of the receiver. The apriori information represent predictable information that can be predicted by the receiver and is not transmitted with the channel information by the transmitter. The transmitter determines the apriori information for the channel and codes the channel information into bits and fields excluding the apriori information. Upon receiving the channel information, the receiver determines the apriori information associated in accordance with previously received information. The apriori information is then provided as probability information for input to the decoder. The decoder then decodes the received information in accordance with the apriori information.
Abstract:
A method for operating a first device-to-device (D2D) device in a cellular communications system includes receiving geo-location information from a first entity in the cellular communications system, the geo-location information including location information for cellular users of the cellular communications system and resources of the cellular communications system available to the cellular users, selecting one of the resources to avoid causing interference to a cellular transmission, the resource being selected in accordance with the geo-location information, and transmitting to a second D2D device over the selected resource.
Abstract:
Coding gains can be achieved by encoding binary data directly to multi-dimensional codewords, which circumvents QAM symbol mapping employed by conventional CDMA encoding techniques. Further, multiple access can be achieved by assigning different codebooks to different multiplexed layers. Moreover, sparse codewords can be used to reduce baseband processing complexity on the receiver-side of the network, as sparse codewords can be detected within multiplexed codewords in accordance with message passing algorithms (MPAs).
Abstract:
In accordance with an embodiment, a method of operating a base station in a wireless system, includes partitioning a frequency band into at least one band of a first type and at least one band of a second type, and coordinating the partitioning with at least one further base station. The at least one band of the first type includes a band on which the base station transmits power proportional to a distance of a user device from the base station, and the at least one band of the second type comprises a band on which base station transmits a data rate inversely proportional to a distance of a user device from the base station.