Abstract:
A system for discharging compressed air from a compressor includes a air distribution manifold that is in fluid communication with the compressor via a conduit and at least one discharge line that is in fluid communication with the air distribution manifold. The discharge line defines a flow path from the air distribution manifold to atmosphere. The discharge line comprises a coupling pipe that is coupled to the air distribution manifold, a sparger section that is disposed downstream from the coupling pipe and at least one restrictor plate that is disposed between the coupling pipe and the sparger section within the flow path. The restrictor plate comprises at least one aperture that provides a pressure drop of the compressed air between the air distribution manifold and the sparger section.
Abstract:
Aspects of the disclosure include systems, methods, and program products for evaluating the condition of a component using an acoustic sensor embedded within a lighting device. A system according to the present disclosure can include a first lighting device configured to illuminate an area of an industrial plant; a first acoustic sensor embedded within the first lighting device and configured to detect an acoustic signature of a component in the industrial plant; a computing device communicatively connected to the first acoustic sensor and configured to evaluate a condition of the component in the industrial plant based on the acoustic signature.
Abstract:
A system includes a silencer baffle which mounts in a fluid conduit along a fluid flow path. The silencer baffle includes a first baffle section having first and second baffle portions which couple together laterally about a support structure extending between opposite sides of the fluid conduit.
Abstract:
Exciter circuitry includes a controller that receives a first signal requesting that a generator coupled to the exciter circuitry stop providing real power to an electrical grid. The controller also sends a second signal to a turbine control system of a turbine coupled to the generator to close at least one fuel nozzle, at least one inlet guide vane, or at least one variable stator vane in response to receiving the first signal. The controller further instructs the exciter circuitry to provide direct current (DC) voltage and DC current to a rotor of the generator, wherein the DC voltage and the DC current causes the generator to operate synchronously with the electrical grid.
Abstract:
A system includes a conduit having a fluid flow path and a silencer baffle disposed in a fluid conduit along the fluid flow path, where the silencer baffle has at least two of the plurality of baffle sections are coupled together via mating interlock structures.
Abstract:
In one embodiment, a turbine system includes a compressor, an intake section including a filter house and an inlet duct. The intake section is coupled to the compressor, and the filter house is upstream from the inlet duct. The turbine system also includes one or more sensors disposed in the intake section, and a processor configured to receive sensor data from the one or more sensors, one or more filter degradation rates for one or more filtration stages of the filter house, or some combination thereof, predict a compressor degradation rate for the compressor using a compressor degradation prediction model that provides a function of performance of the compressor based on the sensor data, the one or more filter degradation rates, or some combination thereof, and perform one or more preventative actions based on the compressor degradation rate prediction.
Abstract:
A turbomachine system according to an embodiment includes: a gas turbine system including a compressor component, a combustor component, and a turbine component; a mixing area for receiving an exhaust gas stream produced by the gas turbine system; a fluid injection system for injecting a fluid into the mixing area to reduce a temperature of the exhaust gas stream; and an exhaust processing system for processing the reduced temperature exhaust gas stream.
Abstract:
A gas turbine system includes an exhaust processing system that may process exhaust gas generated by a gas turbine engine, the exhaust processing system includes an exhaust diffuser that may receive the exhaust gas from a turbine of the gas turbine engine and having an annular passage disposed between an inner annular wall and an outer annular wall, and an air injection assembly disposed within the exhaust diffuser. The air injection assembly includes one or more air injection conduits disposed within the annular passage of the exhaust diffuser and including fluid injection holes that may direct a cooling fluid into a first mixing region of the exhaust diffuser.
Abstract:
A silencer duct that may be part of, for example, a turbomachine inlet may include a duct body. A first perforated wall extends within the duct body and substantially parallel to an interior surface of the duct body. A first acoustic absorbing material may be positioned between the duct body and the first perforated wall. A silencer element may extend axially through the duct body, the silencer element including a second perforated wall having a second acoustic absorbing material adjacent thereto.
Abstract:
An inlet system for a gas turbine includes an inlet duct, a silencer assembly disposed downstream from the inlet duct and an outlet duct disposed downstream from the silencer assembly. The silencer assembly may include a duct and a plurality of laterally spaced baffles disposed within the duct. The baffles may be arranged substantially parallel to a flow of air flowing through the inlet system. Each baffle includes a leading edge portion, a trailing edge portion that is longitudinally spaced from the leading edge portion and a pair of laterally opposing side walls that extend between the leading and trailing edges. Each baffle includes at least one acoustic panel that extends at least partially across one side wall of the pair of side walls.