Abstract:
In one embodiment, a system may include a gas turbine system. the gas turbine system includes a gas turbine, an after-treatment system that may receive exhaust gases from the gas turbine system, and a controller that may receive inputs and model operational behavior of an industrial plant based on the inputs. The industrial plant may include the gas turbine and the after-treatment system. The controller may also determine one or more operational parameter setpoints for the industrial plant, select the one or more operational parameter setpoints that reduce an output of a cost function, and apply the one or more operational parameter setpoints to control the industrial plant.
Abstract:
A system includes an engine comprising an EGR valve that recirculates a portion of exhaust gas, a data repository that stores a first look up and one or more engine operational parameters, an engine control unit operationally coupled to the engine and the data repository, wherein the engine control unit is configured to: determine a desired EGR flow rate reference of the portion of the exhaust gas based on the one or more engine operational parameters and the first look up table, determine a current estimated EGR flow rate based on the one or more engine operational parameters, determine a designated corrected EGR flow rate reference based on the desired EGR flow rate reference and a delta EGR flow rate, determine EGR flow rate error, and determine a percentage opening of the EGR valve based at least on the EGR flow rate error.
Abstract:
A system includes a nitrogen oxide reduction catalyst fluidly coupled to an exhaust conduit of an engine system. The nitrogen oxide reduction catalyst is configured to reduce nitrogen oxides in an engine exhaust. The system also includes an ammonia oxidation catalyst fluidly coupled to the exhaust conduit downstream of the nitrogen oxide reduction catalyst and configured to reduce ammonia in the engine exhaust. Further, the system includes a reductant injection control system configured to control an injection of reductant into the exhaust conduit, determine a first nitrogen oxide conversion rate of the nitrogen oxide reduction catalyst, determine an ammonia storage value of the nitrogen oxide reduction catalyst, and determine a first temperature of the engine exhaust upstream of the ammonia oxidation catalyst. The reductant injection control system is also configured to increase or decrease the injection of reductant based on the first nitrogen oxide conversion, the ammonia storage value, and the first temperature.
Abstract:
A system includes a controller configured to compare a nitrogen oxides (NOX) concentration within treated exhaust gases from a combustion engine after flowing through a first catalyst assembly and a second catalyst assembly relative to a NOX threshold value, to determine a change in O2 concentration within the treated exhaust gases between the first and second catalyst assemblies upstream of a location of oxidant injection into the treated exhaust gases, and to adjust an air-fuel ratio of the combustion engine based on the change in O2 concentration in the treated exhaust gases if the NOX concentration is greater than the NOX threshold value.
Abstract:
A system includes a controller that has a processor configured to receive a first signal from a first oxygen sensor indicative of a first oxygen measurement, wherein the first oxygen sensor is disposed upstream of a catalytic converter system; and to receive a second signal from a second oxygen sensor indicative of a second oxygen measurement, wherein the second oxygen sensor is disposed downstream of the catalytic converter system; and to execute a catalyst estimator system, wherein the catalyst estimator system is configured to derive an oxygen storage estimate based on the first signal, the second signal, and a catalytic converter model. The processor is configured to derive a system oxygen storage setpoint for the catalytic converter system based on the catalytic converter model and the oxygen storage estimate.
Abstract:
A system includes an exhaust aftertreatment system configured to treat emissions from a combustion engine. The exhaust aftertreatment system includes a first catalyst assembly having an outlet. The exhaust aftertreatment system also includes an ammonia slip catalyst (ASC) assembly configured to receive a fluid from the first catalyst assembly and to convert ammonia (NH3) within the fluid into nitrogen (N2), wherein the ASC assembly has an inlet. The exhaust aftertreatment system further includes a silencer disposed between the outlet of the first catalyst assembly and the inlet of the ASC assembly, wherein the silencer is configured to receive the fluid and an oxidant for mixing with the fluid provide sufficient oxygen in the fluid flowing into the inlet of the ASC assembly to enable the catalytic activity in the ASC assembly that coverts NH3 into N2, and the silencer is configured to mix the fluid and the oxidant.
Abstract:
A system includes a controller. The controller is configured to monitor a catalytic activity within an ASC assembly that converts ammonia (NH3) within a fluid received from a three-way catalyst (TWC) assembly into nitrogen (N2) to determine whether the catalytic activity in the ASC assembly has aged. The controller is configured to adjust a temperature of the fluid flowing into an inlet of the ASC assembly by controlling an amount of oxidant injected via an oxidant injection system into the fluid upstream of the inlet of the ASC assembly based on a determination that the catalytic activity in the ASC assembly has aged.
Abstract:
A passive mid bed air injection apparatus for an engine includes a three way catalyst positioned in an exhaust stream of the engine. The three way catalyst reduces NOx, CO and HC from the exhaust stream. The three way catalyst includes an ammonia slip catalyst positioned in the exhaust stream of the engine. The ammonia slip catalyst is positioned downstream from the three way catalyst and oxidizes NH3 and CO from the exhaust stream. The three way catalyst includes an oxygen input disposed between the three way catalyst and the ammonia slip catalyst such that the oxygen input delivers air downstream from the three way catalyst and upstream from the ammonia slip catalyst. The oxygen input receives the air from a charged side of a forced induction device and delivers the air to the exhaust stream entering the ammonia slip catalyst. An associated method also provided.
Abstract:
Various embodiments include systems adapted to monitor catalyst deterioration. Some embodiments include a catalyst deterioration detection system including a pre-catalytic converter gas sensor, a post-catalytic converter gas sensor, at least one computing device in communication with the pre-catalytic converter and post-catalytic converter gas sensors, the at least one computing device configured to monitor catalyst deterioration by performing actions including estimating a catalyst gas storage level by comparing a difference between a pre-catalytic converter gas level from the pre-catalytic converter gas sensor and a post-catalytic converter gas level from the post-catalytic converter gas sensor, comparing the estimated catalyst gas storage level to a baseline catalyst gas storage level and determining that the catalyst is deteriorated in response to the baseline catalyst gas storage level exceeding the estimated gas storage level by a threshold difference.