摘要:
The present invention relates the separation of a target gas from a mixture of gases through the use of engineered structured adsorbent contactors in pressure swing adsorption and thermal swing adsorption processes. Preferably, the contactors contain engineered and substantially parallel flow channels wherein 20 volume percent or less of the open pore volume of the contactor, excluding the flow channels, is in the mesopore and macropore range.
摘要:
The present invention relates to the selective separation of carbon dioxide (“CO2”) from nitrogen (“N2”) in streams containing both carbon dioxide and nitrogen utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate carbon dioxide from combustion gas (e.g., flue gas) streams preferably for sequestration of at least a portion of the carbon dioxide produced in combustion processes.
摘要:
The present invention relates to the selective separation of hydrogen (“H2”) hydrocarbons in streams containing both hydrogen and hydrocarbons (e.g. methane, ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in either a pressure swing adsorption process, a temperature swing adsorption process, or a membrane separations process to separate hydrogen from hydrocarbons present in hydrogen production streams or petrochemical/petroleum refining product streams and intermediate streams.
摘要:
The present invention relates to engineered structured adsorbent contactors for use in pressure swing adsorption and thermal swing adsorption processes. Preferably, the contactors contain engineered and substantially parallel flow channels wherein 20 volume percent or less of the open pore volume of the contactor, excluding the flow channels, is in the mesopore and macropore range.
摘要:
The separation of a target gas from a mixture of gases using a thermal swing adsorption process wherein a thermal wave is used, primarily in the desorption step. The process of this invention enables one to separately remove multiple contaminants from a treated gaseous stream.
摘要:
The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, nitrogen process streams, and other types of streams. The methods and systems may include at least one swing adsorption process including pressure swing adsorption, temperature swing adsorption, and rapid-cycle adsorption processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and for other utilities. The systems and processes of the present disclosure are further applicable to high pressure gaseous streams, for example, up to about 600 bar.
摘要:
The present invention relates the separation of a target gas from a mixture of gases through the use of engineered structured adsorbent contactors in pressure swing adsorption and thermal swing adsorption processes. Preferably, the contactors contain engineered and substantially parallel flow channels wherein 20 volume percent or less of the open pore volume of the contactor, excluding the flow channels, is in the mesopore and macropore range.
摘要:
A process and a system for increasing para-xylene production from a C8 aromatic feedstream by coupling at least one xylene isomerization reactor with at least one pressure swing adsorption unit or temperature swing absorption unit to produce a product having a super-equilibrium para-xylene concentration. This product is then subjected to para-xylene separation and purification.
摘要:
This invention is directed to a heat exchanged membrane reactor for electric power generation. More specifically, the invention comprises a membrane reactor system that employs catalytic or thermal steam reforming and a water gas shift reaction on one side of the membrane, and hydrogen combustion on the other side of the membrane. Heat of combustion is exchanged through the membrane to heat the hydrocarbon fuel and provide heat for the reforming reaction. In one embodiment, the hydrogen is combusted with compressed air to power a turbine to produce electricity. A carbon dioxide product stream is produced in inherently separated form and at pressure to facilitate injection of the CO2 into a well for the purpose of sequestering carbon from the earth's atmosphere.
摘要:
The invention is a method and system of separating a multi-component fluid in a wellbore. At least one fluid separation membrane comprising a feed side and a permeate side is incorporated in the wellbore. A flowing stream of the multi-component fluid obtained from a subterranean zone being in fluid communication with the wellbore is passed across the feed side of the membrane at a first pressure. A retentate stream depleted in at least one component compared to the multi-component fluid is withdrawn from the feed side of the membrane and passed to the earth's surface. A permeate stream at a second pressure is withdrawn from the permeate side, in which the permeate stream is enriched in at least one component compared with the multi-component fluid. The second pressure is controlled to maintain the second pressure below the first pressure.