摘要:
According to the photomultiplier tube, the dynode unit 10 is constructed from a plurality of stages of dynodes 11 laminated one on another for multiplying incident electrons in a cascade manner through each of a plurality of channels. The anode unit 13 has a plurality of anodes 24 which define a plurality of electron passage gaps 14 each for transmitting the electrons emitted from the dynode unit 10 at a corresponding channel. The inverting dynode plate 15 is provided with a plurality of electron incident strips 17 each for receiving electrons having passed through a corresponding electron passage gap 14 in the anode unit 13, multiplying the electrons, and guiding the electrons back to the corresponding anode 24. The electron incident strip 17 is designed to have: the main surface 18a confronting the electron passage gap 14; and the rising surface 18c rising toward the anode unit 13 from the edge 18b of the main surface 18a which is located at a position confronting the electron passage gap 14 in the anode unit 13.
摘要:
A laser processing method for forming a hole in a sheet-like object to be processed made of silicon comprises a depression forming step of forming a depression in a part corresponding to the hole on a laser light entrance surface side of the object, the depression opening to the laser light entrance surface; a modified region forming step of forming a modified region along a part corresponding to the hole in the object by converging a laser light at the object after the depression forming step; and an etching step of anisotropically etching the object after the modified region forming step so as to advance the etching selectively along the modified region and form the hole in the object; wherein the modified region forming step exposes the modified region or a fracture extending from the modified region to an inner face of the depression.
摘要:
In a method comprising a modified region forming step of converging a laser light at a sheet-like object to be processed made of silicon so as to form a plurality of modified spots within the object along a modified region forming line tilted in a first lateral direction with respect to a thickness direction of the object and the plurality of modified spots construct a modified region, and an etching step of anisotropically etching the object after the modified region forming step so as to advance the etching selectively along the modified region and form the object with a space extending obliquely with respect to the thickness direction, the modified region forming step forms the plurality of modified spots such that the modified spots adjacent to each other at least partly overlap each other when seen in the first lateral direction.
摘要:
Electrons are prevented from being made incident onto an insulation part of a casing between dynodes to improve a withstand voltage. The photomultiplier tube 1 is a photomultiplier tube which is provided with substrates 20, 40 arranged so as to oppose each other, with the respective opposing surfaces 20a, 40a made with an insulating material, a substrate 30 constituting a casing together with the substrates 20, 40, dynodes 31a to 31j arrayed on an opposing surface 40a on the substrate 40 so as to be spaced away sequentially from a first end side to a second end side, a photocathode 22 installed so as to be spaced away from the dynode 31a to the first end side, and an anode part 32 installed so as to be spaced away from the dynode 31j to the second end side, in which the opposing surface 20a of the substrate 20 is formed so as to cover the dynodes 31a to 31j, and a plurality of conductive layers 21a to 21j set equal in potential to dynodes 31a to 31j which are electrically independent from each other are installed at sites opposing individually the dynodes 31a to 31j on the opposing surface 20a.
摘要:
The present invention relates to a photomultiplier having a fine configuration capable of realizing stable detection accuracy. The photomultiplier has a housing whose inside is maintained vacuum, and a photocathode, an electron-multiplier section, and an anode are disposed in the housing. In particular, one or more control electrodes disposed in an internal space of the housing which surrounds the electron-multiplier section and the anode are electrically connected via one or more connection parts extending from an electron emission terminal of the electron-multiplier section. In this configuration, due to a voltage, instead of the applying between an electron entrance terminal and the electron emission terminal of the electron-multiplier section, being applied between the electron entrance terminal and the control electrodes, an electric potential gradient which is increased gradually from the photocathode side toward the anode side is formed in the electron-multiplier section, and a sufficient electric potential difference is provided between the electron emission terminal of the electron-multiplier section and the anode, which makes it possible to obtain stable detection accuracy.
摘要:
A vacuum vessel is configured by hermetically joining a faceplate to one end of a side tube and a stem to the other end via a tubular member. A photocathode, a focusing electrode, dynodes, a drawing electrode, and anodes are arranged within the vacuum vessel. At the center of the stem an air discharging tube is connected. The air discharging tube includes an outer side tube and an inner side tube, which are disposed coaxially and connected to each other at the stem side. The outer side tube has high adhesiveness with the stem and the inner side tube is thin and has small stress when being cut, thereby enabling the joint with the vacuum vessel not to be damaged when the air discharging tube is sealed.
摘要:
A vacuum vessel (18) is configured by hermetically joining a faceplate (13) with one end of a side tube (15) and hermetically joining a stem (50) with another end via a ring-shaped side tube (37). Within the vacuum vessel (18), a focus electrode (17), dynodes (Dy1-Dy9), an anode (25), and a dynode (Dy10) are arranged from the side of a photocathode (14) provided to the faceplate (13). The dynode (Dy10) is supported on spacers (33) and a positioning protrusion (31) provided on the stem (50). The anode (25) is placed on support members (21). The focus electrode (17), the dynodes (Dy1-Dy9), and the anode (25) are stacked with inter-layer members (23) interposed therebetween, the inter-layer members (23) being located coaxially with the support members (21), to ensure high anti-vibration performance. Because the anode (25) and the dynode (Dy10) have no insulating body therebetween, light emission is suppressed and noises can be reduced.
摘要:
In a photomultiplier, a ring-like side tube is not interposed between a side tube and a stem in the radial direction, and the side tube is joined to the ring-like side tube in a state of being directly capped onto a portion of the stem that protrudes out from an open end face at the upper side of the ring-like side tube. The enlargement of the photomultiplier in the radial direction due to overlapping of the side tube and the ring-like side tube can thereby be restricted and a high density, a high degree of integration, etc., can be realized in mounting the photomultiplier.
摘要:
A holding member or a base member, through which stem pins are passed and one surface of which is held by the holding member, is joined to the stem pins and the holding member by fusion by the melting of the base member. Upon melting, a volume of the base member is made to escape into a base member seep portion, and a stem is arranged as a two-layer arrangement formed by the holding of the base member by the holding member. When the holding member is joined to the inner surface of the base member, the inner surface of the stem is improved in positional precision, flatness, and levelness, while when the holding member is joined to the outer surface of the base member, the outer surface of the stem is improved in positional precision, flatness, and levelness.
摘要:
A dynode constituting an electron multiplier or a photomultiplier may be provided with eight rows of channels each defined by an outer frame and a partitioning part of the dynode. In each channel, a plurality of electron multiplying holes may be arranged. In specified positions of the outer frame and the partitioning part of the dynode, glass receiving parts wider than the outer frame and the partitioning part may be provided integrally with the dynode. Glass parts may be bonded to all the glass receiving parts. The glass parts may be bonded by applying glass to the glass receiving parts and hardening the glass and each may have a generally dome-like convex shape. Each dynode may be formed after the dome-like glass part may be bonded to the glass receiving part.