-
公开(公告)号:US11908950B2
公开(公告)日:2024-02-20
申请号:US16902069
申请日:2020-06-15
Applicant: Intel Corporation
Inventor: Kirby Maxey , Chelsey Dorow , Kevin P. O'Brien , Carl Naylor , Ashish Verma Penumatcha , Tanay Gosavi , Uygar E. Avci , Shriram Shivaraman
IPC: H01L29/786 , H01L29/423 , H01L29/66 , H01L29/24
CPC classification number: H01L29/78696 , H01L29/24 , H01L29/42392 , H01L29/66969
Abstract: Embodiments include two-dimensional (2D) semiconductor sheet transistors and methods of forming such devices. In an embodiment, a semiconductor device comprises a stack of 2D semiconductor sheets, where individual ones of the 2D semiconductor sheets have a first end and a second end opposite from the first end. In an embodiment, a first spacer is over the first end of the 2D semiconductor sheets, and a second spacer is over the second end of the 2D semiconductor sheets. Embodiments further comprise a gate electrode between the first spacer and the second spacer, a source contact adjacent to the first end of the 2D semiconductor sheets, and a drain contact adjacent to the second end of the 2D semiconductor sheets.
-
公开(公告)号:US11769789B2
公开(公告)日:2023-09-26
申请号:US16368450
申请日:2019-03-28
Applicant: Intel Corporation
Inventor: Nazila Haratipour , Chia-Ching Lin , Sou-Chi Chang , Ashish Verma Penumatcha , Owen Loh , Mengcheng Lu , Seung Hoon Sung , Ian A. Young , Uygar Avci , Jack T. Kavalieros
IPC: H01G4/30 , H10B51/00 , H01L23/522 , H01L49/02 , H01G4/012
CPC classification number: H01L28/56 , H01G4/012 , H01G4/30 , H01L23/5226 , H10B51/00
Abstract: A capacitor is disclosed. The capacitor includes a first metal layer, a second metal layer on the first metal layer, a ferroelectric layer on the second metal layer, and a third metal layer on the ferroelectric layer. The second metal layer includes a first non-reactive barrier metal and the third metal layer includes a second non-reactive barrier metal. A fourth metal layer is on the third metal layer.
-
公开(公告)号:US20230238444A1
公开(公告)日:2023-07-27
申请号:US18130326
申请日:2023-04-03
Applicant: Intel Corporation
Inventor: Tanay Gosavi , Chia-ching Lin , Raseong Kim , Ashish Verma Penumatcha , Uygar Avci , Ian Young
IPC: H01L29/51 , H01L27/088 , H01L29/78 , H03H9/17 , H01L29/423
CPC classification number: H01L29/516 , H01L27/0886 , H01L29/7851 , H03H9/17 , H01L29/78391 , H01L29/42356
Abstract: Describe is a resonator that uses ferroelectric (FE) materials in the gate of a transistor as a dielectric. The use of FE increases the strain/stress generated in the gate of the FinFET. Along with the usual capacitive drive, which is boosted with the increased polarization, FE material expands or contacts depending on the applied electric field on the gate of the transistor. As such, acoustic waves are generated by switching polarization of the FE materials. In some embodiments, the acoustic mode of the resonator is isolated using phononic gratings all around the resonator using the metal line above and vias' to body and dummy fins on the side. As such, a Bragg reflector is formed above the FE based transistor.
-
公开(公告)号:US20230100451A1
公开(公告)日:2023-03-30
申请号:US17485153
申请日:2021-09-24
Applicant: Intel Corporation
Inventor: Kirby Maxey , Ashish Verma Penumatcha , Carl Naylor , Chelsey Dorow , Kevin O?Brien , Shriram Shivaraman , Tanay Gosavi , Uygar Avci
IPC: H01L29/417 , H01L29/40 , H01L29/423 , H01L29/24
Abstract: Transistors, devices, systems, and methods are discussed related to transistors including a number of 2D material channel layers and source and drain control electrodes coupled to source and drain control regions of the 2D material channels. The source and drain control electrodes are on opposite sides of a gate electrode, which controls a channel region of the 2D material channels. The source and drain control electrodes provide for reduced contact resistance of the transistor, the ability to create complex logic gates, and other advantages.
-
公开(公告)号:US20220199812A1
公开(公告)日:2022-06-23
申请号:US17129486
申请日:2020-12-21
Applicant: Intel Corporation
Inventor: Carl Naylor , Chelsey Dorow , Kevin O'Brien , Sudarat Lee , Kirby Maxey , Ashish Verma Penumatcha , Tanay Gosavi , Patrick Theofanis , Chia-Ching Lin , Uygar Avci , Matthew Metz , Shriram Shivaraman
IPC: H01L29/76 , H01L29/24 , H01L27/092 , H01L21/8256 , H01L21/02
Abstract: Transistor structures with monocrystalline metal chalcogenide channel materials are formed from a plurality of template regions patterned over a substrate. A crystal of metal chalcogenide may be preferentially grown from a template region and the metal chalcogenide crystals then patterned into the channel region of a transistor. The template regions may be formed by nanometer-dimensioned patterning of a metal precursor, a growth promoter, a growth inhibitor, or a defected region. A metal precursor may be a metal oxide suitable, which is chalcogenated when exposed to a chalcogen precursor at elevated temperature, for example in a chemical vapor deposition process.
-
36.
公开(公告)号:US20210408375A1
公开(公告)日:2021-12-30
申请号:US16915600
申请日:2020-06-29
Applicant: Intel Corporation
Inventor: Chelsey Dorow , Kevin O'Brien , Carl Naylor , Uygar Avci , Sudarat Lee , Ashish Verma Penumatcha , Chia-Ching Lin , Tanay Gosavi , Shriram Shivaraman , Kirby Maxey
Abstract: A transistor includes a channel including a first layer including a first monocrystalline transition metal dichalcogenide (TMD) material, where the first layer is stoichiometric and includes a first transition metal. The channel further includes a second layer above the first layer, the second layer including a second monocrystalline TMD material, where the second monocrystalline TMD material includes a second transition metal and oxygen, and where the second layer is sub-stoichiometric. The transistor further includes a gate electrode above a first portion of the channel layer, a gate dielectric layer between the channel layer and the gate electrode, a source contact on a second portion of the channel layer and a drain contact on a third portion of the channel layer, where the gate electrode is between drain contact and the source contact.
-
公开(公告)号:US10886265B2
公开(公告)日:2021-01-05
申请号:US16002656
申请日:2018-06-07
Applicant: Intel Corporation
Inventor: Ashish Verma Penumatcha , Uygar Avci , Ian Young
IPC: H01L27/06 , H01L21/8234 , H01L29/66 , H01L29/78 , H01L27/088
Abstract: An embodiment includes an apparatus comprising: a dielectric material including fixed charges, the fixed charges each having a first polarity; a channel comprising a channel material, the channel material including a 2-dimensional (2D) material; a drain node; and a source node including a source material, the source material including at least one of the 2D material and an additional 2D material; wherein the source material: (a) includes charges each having a second polarity that is opposite the first polarity, (b) directly contacts the dielectric material. Other embodiments are described herein.
-
公开(公告)号:US20200312976A1
公开(公告)日:2020-10-01
申请号:US16363632
申请日:2019-03-25
Applicant: Intel Corporation
Inventor: Seung Hoon Sung , Jack Kavalieros , Ian Young , Matthew Metz , Uygar Avci , Devin Merrill , Ashish Verma Penumatcha , Chia-Ching Lin , Owen Loh
Abstract: Techniques and mechanisms to provide electrical insulation between a gate and a channel region of a non-planar circuit device. In an embodiment, the gate structure, and insulation spacers at opposite respective sides of the gate structure, each extend over a semiconductor fin structure. In a region between the insulation spacers, a first dielectric layer extends conformally over the fin, and a second dielectric layer adjoins and extends conformally over the first dielectric layer. A third dielectric layer, adjoining the second dielectric layer and the insulation spacers, extends under the gate structure. Of the first, second and third dielectric layers, the third dielectric layer is conformal to respective sidewalls of the insulation spacers. In another embodiment, the second dielectric layer is of dielectric constant which is greater than that of the first dielectric layer, and equal to or less than that of the third dielectric layer.
-
公开(公告)号:US20200286686A1
公开(公告)日:2020-09-10
申请号:US16296082
申请日:2019-03-07
Applicant: Intel Corporation
Inventor: Chia-Ching Lin , Sou-Chi Chang , Ashish Verma Penumatcha , Nazila Haratipour , Seung Hoon Sung , Owen Y. Loh , Jack Kavalieros , Uygar E. Avci , Ian A. Young
IPC: H01G7/06 , H01L49/02 , H01L27/108
Abstract: Described is a ferroelectric-based capacitor that improves reliability of a ferroelectric memory by using low-leakage insulating thin film. In one example, the low-leakage insulating thin film is positioned between a bottom electrode and a ferroelectric oxide. In another example, the low-leakage insulating thin film is positioned between a top electrode and ferroelectric oxide. In yet another example, the low-leakage insulating thin film is positioned in the middle of ferroelectric oxide to reduce the leakage current and improve reliability of the ferroelectric oxide.
-
公开(公告)号:US20200212193A1
公开(公告)日:2020-07-02
申请号:US16238419
申请日:2019-01-02
Applicant: Intel Corporation
Inventor: Tanay Gosavi , Chia-ching Lin , Raseong Kim , Ashish Verma Penumatcha , Uygar Avci , Ian Young
IPC: H01L29/51 , H01L27/088 , H01L29/423 , H03H9/17 , H01L29/78
Abstract: Describe is a resonator that uses anti-ferroelectric (AFE) materials in the gate of a transistor as a dielectric. The use of AFE increases the strain/stress generated in the gate of the FinFET. Along with the usual capacitive drive, which is boosted with the increased polarization, additional current drive is also achieved from the piezoelectric response generated to due to AFE material. In some embodiments, the acoustic mode of the resonator is isolated using phononic gratings all around the resonator using the metal line above and vias' to body and dummy fins on the side. As such, a Bragg reflector is formed above or below the AFE based transistor. Increased drive signal from the AFE results in larger output signal and larger bandwidth.
-
-
-
-
-
-
-
-
-