Abstract:
Described herein are techniques related to near field coupling and wireless power transfers. A device may include a cascaded coil antenna to include a first coil antenna that is connected in series with a second coil antenna. The first and second coil antennas are independent antennas prior to cascading and are located in different surfaces of the device to establish near field coupling through front side, top side, bottom side, or corner side of the portable device. Furthermore, a flux guide may be placed in the cascaded coil antenna to facilitate magnetic flux at the first coil antenna and the second coil antenna to induce current of the same phase during receive mode. During transmit mode, the flux guide facilitates the magnetic flux at the first coil antenna and the second coil antenna to generate magnetic fields of the same direction.
Abstract:
Described herein are techniques related one or more systems, apparatuses, methods, etc. for integrating a near field communications (NFC) coil antenna in a portable device. For example, the NFC antenna is integrated under a metal chassis of the portable device. The metal chassis and a conductive coating—that is integrated underneath the full metal chassis—are designed to include one or more slots to provide high impedance to Eddy current induced in the conductive coating.
Abstract:
Described herein are techniques related one or more systems, apparatuses, methods, etc. for integrating a near field communications (NFC) coil antenna in a portable device. For example, the NFC antenna is integrated under a metal chassis of the portable device. The metal chassis and a conductive coating—that is integrated underneath the full metal chassis—are designed to include one or more slots to provide high impedance to Eddy current induced in the conductive coating.
Abstract:
An apparatus of embodiments, as described herein, includes one or more processors to track data associated with movement of a computing device accessible to a user, and evaluate the data and compare a latency with latency thresholds, where the data indicates the latency and the latency thresholds associated with a frame. The one or more processors are further to maintain a current video encoding rate, if the latency is lower than a first latency threshold and greater than a second latency threshold. The current video encoding rate is decreased if the latency is equal to or greater than the first latency threshold, where the current video encoding rate is increased if the latency is lower than the second latency threshold. The one or more processors are further to present the frame at the computing device including one or more of a wearable device and a mobile device.
Abstract:
The disclosure relates generally to method, system and apparatus to optimize wireless charging to identify a proximal Near-Field Communication (NFC) tag and prevent damage by a magnetic wireless charging field. The disclosed embodiment provide different methods for NFC tag detection without impacting A4WP wireless charging. In an exemplary method, dedicated NFC reader is used to interleave the NFC and A4WP signals on the same coil. In one implementation the signals are frequency-multiplexed. In another implementation, the signals are time-multiplexed.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to order a plurality of segments of an image for encoding and wireless transmission to a display device. The apparatus includes a segment orderer to arrange the segments in an encoding order for encoding. The encoding order is different than a scan line order, and encoding order is such that a center segment of the plurality of segments is to occupy a first position in the encoding order. The first position precedes a second position occupied by the center segment in the scan line order and the center segment corresponds to a center of the image. The apparatus also includes an encoder to encode the segments in the encoding order, and a wireless transmitter to transmit the encoded portions to the display device in the encoding order in which the encoded segments are encoded.
Abstract:
Wireless wearable devices having self-steering antennas are disclosed. A disclosed example wearable device includes an antenna to be communicatively coupled to a wireless data transceiver of a base station. The disclosed example wearable device also includes a steering mount coupled to the antenna, where the steering mount is to adjust an orientation of the antenna towards a wireless coverage zone associated with the wireless data transceiver based on a movement of the wearable device.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to order a plurality of segments of an image for encoding and wireless transmission to a display device. The apparatus includes a segment orderer to arrange the segments in an encoding order for encoding. The encoding order is different than a scan line order, and encoding order is such that a center segment of the plurality of segments is to occupy a first position in the encoding order. The first position precedes a second position occupied by the center segment in the scan line order and the center segment corresponds to a center of the image. The apparatus also includes an encoder to encode the segments in the encoding order, and a wireless transmitter to transmit the encoded portions to the display device in the encoding order in which the encoded segments are encoded.
Abstract:
Described herein are techniques related to near field coupling and wireless power transfers. A device may include a cascaded coil antenna to include a first coil antenna that is connected in series with a second coil antenna. The first and second coil antennas are independent antennas prior to cascading and are located in different surfaces of the device to establish near field coupling through front side, top side, bottom side, or corner side of the portable device. Furthermore, a flux guide may be placed in the cascaded coil antenna to facilitate magnetic flux at the first coil antenna and the second coil antenna to induce current of the same phase during receive mode. During transmit mode, the flux guide facilitates the magnetic flux at the first coil antenna and the second coil antenna to generate magnetic fields of the same direction.
Abstract:
A touch panel for a display may include a touch sensor with a plurality of electrode traces. A first portion of the plurality of electrode traces may form sensing lines configured to receive touch input. The touch sensor includes an edge dummy area between an edge of the touch sensor and an electrode trace of a remaining portion of the plurality of electrode traces. The edge dummy area may be located outside of the sensing lines. The touch panel may further include an antenna with a radiation structure and a ground structure. The radiation structure may be located within a routing traces area outside of the touch sensor. The ground structure may be located within the edge dummy area. The ground structure may include an electrode trace of the plurality of electrode traces located within the edge dummy area of the touch sensor.