摘要:
An integrated circuit is disclosed that includes a single channel device having a first portion of a single shared heterostructure overlying a substrate structure in a single channel device area, and a gate contact that is in contact with the first portion of the single shared heterostructure. The integrated circuit also includes a multichannel device comprising a second portion of the single shared heterostructure overlying the substrate structure in a multichannel device area, a barrier layer overlying the second portion of the single shared heterostructure, and a superlattice structure overlying the barrier layer, the superlattice structure comprising a plurality of heterostructures. An isolation region in the single shared heterostructure electrical isolates the single channel device from the multichannel device.
摘要:
A curled transistor comprises a coiled semiconductor substrate having a plurality of concentrically curled layers. Source and drain regions are configured on a portion of the coiled semiconductor substrate, and a gate dielectric is positioned between the source and drain regions. A first set of metallic contacts electrically couple to the source region on the coiled semiconductor substrate and a second set of metallic contacts electrically couple to the drain region on the coiled semiconductor substrate.
摘要:
Novel applications of nanocoil technology and novel methods of fabricating nanocoils for use in such applications and others. Such applications include microscopic electro-mechanical systems (MEMS) devices including nanocoil mirrors, nanocoil actuators and nanocoil antenna arrays. Inductors or traveling wave tubes fabricated from nanocoils are also included. A method for fabricating nanocoils with a desired pitch includes determining a desired pitch for fabricated nanocoil, selecting coiling arm orientation in which coiling arm orientation is arm angle between coiling arm an crystalline orientation of underlying substrate, whereby coiling arm orientation affects pitch of fabricated nanocoil, patterning coiling arm structure with selected coiling arm orientation, and, releasing coiling arm, whereby fabricated nanocoil is formed.
摘要:
Novel applications of nanocoil technology and novel methods of fabricating nanocoils for use in such applications and others. Such applications include inductors or traveling wave tubes fabricated from spiral nanocoils. Such applications includes inductors or traveling wave tubes fabricated from a method for fabricating nanocoils with a desired pitch. Such a method includes determining a desired pitch for fabricated nanocoil, selecting coiling arm orientation in which coiling arm orientation is arm angle between coiling arm an crystalline orientation of underlying substrate, whereby coiling arm orientation affects pitch of fabricated nanocoil, patterning coiling arm structure with selected coiling arm orientation, and, releasing coiling arm, whereby fabricated nanocoil is formed.
摘要:
The disclosure relates to a Point Cooler based on a combination of principles, including large area, low current density PN junction cooling, and electron emission from heavily doped shallowly-depleted P tips. Using Junction Cooling rather than thermoelectric cooling enables an all silicon device to be made that favorably competes with the commercial thermoelectric cooling systems. Theoretical values of THOT/TCOLD of 6 or more (in contrast to about 1.5 for other solid state refrigerators) predict this single-stage solid state vacuum electronic cooler can approach 50K at light loading, significantly lower than conventional Bismuth Telluride based thermo electrics. The high Z values for PN junction cooling with wire connection and Tunnel heat extraction opens up solid state vibration-less form fit and function replacement cooling.
摘要:
A substrate arrangement for high power semiconductor devices includes a SiC wafer having a Si layer deposited on a surface of the SiC wafer. An SOI structure having a first layer of Si, an intermediate layer of SiO2 and a third layer of Si, has its third layer of Si bonded to the Si deposited on the SiC wafer, forming a unitary structure. The first layer of Si and the intermediate layer of SiO2 of the SOI are removed, leaving a pure third layer of Si on which various semiconductor devices may be fabricated. The third layer of Si and deposited Si layer may be removed over a portion of the substrate arrangement such that one or more semiconductor devices may be fabricated on the SiC wafer while other semiconductor devices may be accommodated on the pure third layer of Si.
摘要:
A method for fabricating nanocoils and improved nanocoils fabricated therefrom. Embodiments of the method utilizing deep reactive ion etching (DRIE). A method for fabricating nanocoils includes providing a silicon-on-insulator (SOI) wafer, in which SOI wafer includes buried oxide layer, patterning one or more devices into a layer of silicon on top of the buried oxide layer, depositing tensile stressed nitride layer on the top silicon layer, patterning coiling arm structure on top silicon layer, patterning an overlapping etch window mask on bottom side of SOI wafer using, in which patterning overlapping etch window mask removes SOI wafer and exposes buried oxide layer in width greater than coiling arm structure, and releasing coiling arm structure so that coiling arm coils to form nanocoil. In embodiments, DRIE is utilized to pattern the overlapping etch window mask.