Abstract:
According to an aspect of the present invention, medical devices are provided which comprise a substrate, a porous carbon layer disposed on at least a portion of the substrate surface, and a polymeric layer disposed on at least a portion of the porous carbon layer.
Abstract:
The present invention generally relates to the conditioning of coated medical devices such as stents. More specifically, the present invention relates to methods for positioning a medical device within an elution media for a predetermined time period to eliminate a burst release from the coating. Under methods and processes of the invention, a medical device target surface may be identified and coated with therapeutic. The coated surface of the medical device may then be positioned within an elution media for a predetermined period of time to release a predetermined amount of coating.
Abstract:
A reticle of a projectile weapon aiming system such as a riflescope includes a primary aiming mark adapted to be sighted-in at a first selected range and further includes a plurality of secondary aiming marks spaced apart below the primary aiming mark. The secondary aiming marks are positioned to compensate for ballistic drop at preselected incremental ranges beyond the first selected range, for a selected group of ammunition having similar ballistic characteristics. Angles subtended by adjacent aiming marks of the reticle can be adjusted by changing the optical power of the riflescope, to thereby compensate for ballistic characteristics of different ammunition. In some embodiments, the reticle includes a set of windage aiming marks spaced apart along at least one secondary horizontal axis intersecting a selected one of the secondary aiming marks, to facilitate compensation for the effect of crosswinds on the trajectory of the projectile.
Abstract:
A series of devices that allow for embedding of an image as a background while also affording the user the ability to write and print on the surface, with erasable capabilities, thus providing a multifunctional product for use in numerous industries. The devices are manufactured from predominately corrugated plastic. In one embodiment a one piece, removably attachable, cabinet system and graphic display system. In an additional embodiment, a writable board, or peg board comprising a front panel and a rear panel wherein the panels are interconnected by parallel rows, or corrugations, these panels include a writable and erasable surface. The present invention relates to assemblies of corrugated systems to better serve personal, business, and educational needs.
Abstract:
The invention relates generally to an implantable medical device for delivering a therapeutic agent to the body tissue of a patient, and a method for making such a medical device. In particular, the invention pertains to an implantable stent, such as an intravascular stent, having a coating comprising an inorganic or ceramic oxide, metal or inert carbon and a plurality of reservoirs in such material that contain a therapeutic agent.
Abstract:
A medical balloon having an inner surface and an outer surface comprising a first coating composition comprising at least one therapeutic agent, the first coating composition disposed on the balloon outer surface and forming an interface between the balloon outer surface and the first coating composition and a second coating composition comprising a bioadhesive, the second coating composition disposed on the first coating composition so as to not affect the interface between the balloon outer surface and the first coating composition, the bioadhesive selected so as to adhere to body tissue, and methods of making the same.
Abstract:
The present invention is generally directed to implantable medical devices for delivering therapeutic agents to the body tissue of a patient and methods for making such medical devices. In particular, the present invention is directed to implantable medical devices, such as intravascular stents, having a surface that includes a plurality of cavities and a plurality of pores and a composition disposed in the pores and/or cavities, as well as, implantable medical devices, such as intravascular stents, having a surface that has a coating composition disposed on the surface, wherein the coating composition includes a plurality of cavities and a plurality of pores and another coating composition disposed in the pores and/or cavities.
Abstract:
A method and device for coating a medical device, such as a stent, including rolling the stent against a ribbon or gravure roll impregnated with coating material. The ribbon and gravure roll may include a recessed pattern matching a strut pattern of the stent. The stent may also be rolled against a plate or cylinder while coating material is forced onto the stent through a pattern of holes or openings in the plate or cylinder matching a strut pattern of the stent.
Abstract:
The invention relates generally to an implantable medical device for delivering a therapeutic agent to the body tissue of a patient, and a method for making such a medical device. In particular, the invention pertains to an implantable stent, such as an intravascular stent, having a coating comprising an inorganic or ceramic oxide, metal or inert carbon and a plurality of reservoirs in such material that contain a therapeutic agent.