Abstract:
A liquid crystal display device comprises a liquid crystal panel including sub-pixels and a back light for irradiating light to the back surface of liquid crystal panel. A transmission sub-pixel can be switched into an image display state which can allow irradiated light to exit, and a black display state which does not allow irradiated light to exit. A mirror sub-pixel can be switched between a mirror state which can allow reflected light to exit and a non-mirror state which does not allow reflected light to exit, independently of the transmission sub-pixel. A control unit places each transmission sub-pixel into the image display state or black display state, and places each mirror sub-pixel into the mirror state or non-mirror state.
Abstract:
A liquid crystal display element accommodates a reflective portion provided with a concavo-convex reflecting pixel electrode for reflecting incident light from the display face side and displaying information, and a transmissive portion provided with a transmissive pixel electrode for transmitting light that is output from the backlight. The voltages applied to the reflective portion and the transmissive portion are controlled independently. The reflective portion and the transmissive portion have wide viewing angle characteristics. In a wide viewing angle region greater than a certain angle, the luminance of the reflective portion is greater than the luminance of the transmissive portion, whereas in other angle regions the luminance of the transmissive portion is greater than the luminance of the reflective portion. In a wide viewing field mode, the reflective portion and transmissive portion both perform normal display, whereas in the narrow viewing field mode, the transmissive portion performs normal display, while the reflective portion performs cancelling data display, thereby rendering unviewable the display content of the transmissive portion from beyond a certain viewing angle. It is thus possible to provide a semi-transmissive liquid crystal display device and a portable terminal device switchable between a narrow viewing field mode and a wide viewing field mode.
Abstract:
In an LCD device, a circular polarizer is provided to each of two substrates that hold a liquid crystal layer. The circular polarizer on the display surface side includes a polarizer, λ/2 plate in which Rth>0, and a λ/4 plate in which Rth 0. Rth is a retardation in the thickness direction of a λ/2 plate or a λ/4 plate. The absolute value of the sum of the Rth between the λ/2 plate for which Rth>0 and the λ/2 plate for which Rth 0.
Abstract:
A first polarizer and a second polarizer have respective absorption axes extending approximately perpendicularly to each other, and a first retardation plate and a third retardation plate have respective slow axes extending approximately perpendicularly to each other. The first retardation plate and the third retardation plate have respective retardations that are approximately equal to each other, and have respective Nz coefficients that are approximately equal to each other. A second retardation plate and a liquid crystal layer in a transmissive display area have a slow axis and an orientation axis, respectively, extending approximately perpendicularly to each other. The second retardation plate and the liquid crystal layer in the transmissive display area have respective retardations that are approximately equal to each other.
Abstract:
In the liquid crystal display device of the present invention, a circular polarizer is provided to each of a pair of substrates that hold a liquid crystal layer, wherein the circular polarizer on the display surface side is composed of a polarizer, λ/2 plate in which Rth>0, and a λ/4 plate in which Rth 0. Rth is a retardation in the thickness direction of a λ/2 plate or a λ/4 plate. A reduction is achieved in the absolute value of the sum of the Rth between the λ/2 plate for which Rth>0 and the λ/2 plate for which Rth 0. A circular polarizer having excellent wavelength characteristics and excellent viewing angle characteristics when viewed at an angle is thereby obtained, and a liquid crystal display device and a terminal device that use the circular polarizer are obtained.
Abstract:
In a formation method for forming a fine structure in a workpiece (30) containing an etching control component, using an isotropic etching process, a mask (32, 34) having an opening (36) is applied to the workpiece, and the workpiece is etched with an etching solution (38) to thereby form a recess (40), corresponding to a shape of the opening, in a surface of the workpiece. The etching of the workpiece is stopped due to the etching control component eluted out of the workpiece in the etching solution within the recess during the isotropic etching process.
Abstract:
An LCD device in an LCD projector includes a TFT substrate, a counter substrate, an LC layer sandwiched between the TFT substrate and the counter substrate, and a pair of compensation substrates attached onto the outer surfaces of the TFT substrate and the counter substrate far from the LC layer. The compensation substrate has a negative coefficient of thermal expansion (CTE) for compensating the retardation caused by a temperature rise of the TFT substrate and the counter substrate due to irradiation thereof by a light source.
Abstract:
Provided is a display device having a viewing angle changing function, which is capable of preventing leakage of information displayed on a display screen even when there is a fault generated in changing the viewing angle. The image display device including a viewing angle changing element capable of changing a wide vision display and a narrow vision display and including a display element is provided with a detection element which detects a fault generated in the viewing angle changing element and a module for changing to a narrow vision display when there is a fault based on a detection value of the detection element. For example, when there is a fault, a transparent heater is operated to heat a liquid crystal layer to set a transparent-scattering changing element to a transparent state and forcibly set the display device to a narrow vision display.
Abstract:
A liquid crystal display element includes a liquid crystal composition sandwiched between substrates, wherein at least two types of liquid crystal compositions which exhibit liquid crystal phase in different temperature ranges are contained within each one pixel, and each of the at least two types of liquid crystal compositions is sealed and isolated within each pixel.
Abstract:
A microlouver includes a periodic structure in which a transparent layer and a light absorption layer are alternately disposed with a constant, repetitive period. The range of the exit direction of a light beam passing through the transparent layer is restricted by the light absorption layer. The periodic structure includes a periodic structure portion divided in the direction that intersects the direction in which the transparent layer and the light absorption layer are repeatedly disposed. In the periodic structure portion, between the periodic structures adjacent to each other, there is a difference of 180 degree in the phase of spatial frequency of each periodic structure.