Abstract:
A liquid crystal display accommodates a reflective portion with a concavo-convex reflecting pixel electrode for reflecting incident light from the display face side, and a transmissive portion with a transmissive pixel electrode for transmitting light output from the backlight. In a wide viewing angle region, luminance of the reflective portion is greater than the transmissive portion. In other angle regions, luminance of the transmissive portion is greater than the reflective portion. In a wide viewing field mode, the reflective portion and transmissive portion both perform normal display. In the narrow viewing field mode, the transmissive portion performs normal display, while the reflective portion performs cancelling data display, thereby rendering unviewable the display content of the transmissive portion from beyond a certain viewing angle. Thus, a semi-transmissive liquid crystal display device and a portable terminal device is switchable between a narrow viewing field mode and a wide viewing field mode.
Abstract:
In a formation method for forming a fine structure in a workpiece (30) containing an etching control component, using an isotropic etching process, a mask (32, 34) having an opening (36) is applied to the workpiece, and the workpiece is etched with an etching solution (38) to thereby form a recess (40), corresponding to a shape of the opening, in a surface of the workpiece. The etching of the workpiece is stopped due to the etching control component eluted out of the workpiece in the etching solution within the recess during the isotropic etching process.
Abstract:
An LCD device in an LCD projector includes a TFT substrate, a counter substrate, an LC layer sandwiched between the TFT substrate and the counter substrate, and a pair of compensation substrates attached onto the outer surfaces of the TFT substrate and the counter substrate far from the LC layer. The compensation substrate has a negative coefficient of thermal expansion (CTE) for compensating the retardation caused by a temperature rise of the TFT substrate and the counter substrate due to irradiation thereof by a light source.
Abstract:
An IPS-mode transflective LCD device includes an array of pixels each including a reflective region and a transmissive region juxtaposed. The reflective region operates in a normally-white mode, and the transmissive region operates in a normally-black mode. A common data signal is supplied to the reflective region and transmissive region, whereas the common electrode signal in the transmissive region is an inverted signal of the common electrode signal in the reflective region, to thereby obtain similar gray-scale levels.
Abstract:
To provide a liquid crystal panel capable of realizing excellent display performance using a circular polarizing plate therein, and a liquid crystal display device and a terminal device using the same, with respect to a semi-transmission type liquid crystal display device in a horizontal electric field mode (In-Plane Switching: IPS).A viewer-side circular polarizing plate and a backside circular polarizing plate are disposed outside of a viewer-side substrate and a backside substrate respectively, and a viewer-side compensation plate and a backside compensation plate are disposed between the respective polarizing plates and substrates to reduce a refractive index anisotropy of a liquid crystal layer.
Abstract:
An IPS-mode transflective LCD device includes an array of pixels each including a reflective region and a transmissive region juxtaposed. The reflective region operates in a normally-white mode, and the transmissive region operates in a normally-black mode. A common data signal is supplied to the reflective region and transmissive region, whereas the common electrode signal in the transmissive region is an inverted signal of the common electrode signal in the reflective region, to thereby obtain similar gray-scale levels.
Abstract:
A liquid crystal display element is disclosed for displaying an image. The liquid crystal display element comprises a liquid crystal display layer in which voltages are applied to a transmissive display unit and a reflective display unit, defined in one pixel, independently of each other, and a light source for irradiating the liquid crystal display layer with light from the back, and a reflection control element disposed between the liquid crystal display layer and light source. The liquid crystal display element is switched between a reflective state and a transmissive state in accordance with a voltage applied to the reflection control element. The liquid crystal display element is switched among a transmissive display mode, a combined reflective/transmissive display mode, and a reflective display mode, by utilizing the transmissive display unit and reflective display unit to display an image independently of each other.
Abstract:
To improve a patterning accuracy of pixel electrodes and common electrodes. The liquid crystal display device includes a reflective display area and a transmissive display area within a pixel that is configured with a pair of opposing substrates and a liquid crystal layer provided between the substrates. The reflective display area achieves display by reflection of light, and the transmissive display area achieves display by transmission of light. A laminated body including a reflective plate, an insulating layer, and a metal electrode for rotating liquid crystal molecules of the liquid crystal layer within a surface thereof is provided within the reflective display area.
Abstract:
A Liquid Crystal Display (LCD), a backlight used for the LCD and a method for producing the LCD and the backlight are provided which are capable of inhibiting an increase in component counts and in assembling processes and of reducing them, thereby achieving low costs. A display image is obtained by arranging a backlight section being able to perform scanning as a single unit in a manner that it positionally matches a liquid crystal displaying section. The backlight section is provided with a plurality of scanning electrodes and light emitting layers each providing a different luminescent color, and being spatially separated from each other on a principal face of the backlight and scanning is performed on a plurality of light emitting layers providing a different luminescent color.
Abstract:
To provide a liquid crystal panel capable of realizing excellent display performance using a circular polarizing plate therein, and a liquid crystal display device and a terminal device using the same, with respect to a semi-transmission type liquid crystal display device in a horizontal electric field mode (In-Plane Switching: IPS).A viewer-side circular polarizing plate and a backside circular polarizing plate are disposed outside of a viewer-side substrate and a backside substrate respectively, and a viewer-side compensation plate and a backside compensation plate are disposed between the respective polarizing plates and substrates to reduce a refractive index anisotropy of a liquid crystal layer.