Abstract:
A method of diagnosing the health of an individual by collecting a breath sample from the individual and measuring the amount of each of a plurality of analytes in the sample. The amount of each analytes is measured by fitting a time response curve of a sample-evaluation fuel cell in which the fuel cell sample electrode is contacted with the sample with the analysis based on a function of standard time response curves for an equivalent fuel cell configuration obtained separately for each of the analytes on a fuel cell with equivalent construction as sample-evaluation fuel cell. Each of the plurality of analytes is generally indicative of an aspect of the individual's health. Suitable analytes include, for example, inorganic compounds as well as compositions that exhibit negative reduction reactions at least for a portion of the time response curve. In particular, acetone exhibits a negative potential/current peak when it is an analyte in a fuel cell in an sample electrode with a counter electrode exposed to oxygen, which may or may not be introduced in the form of air. Various forms of analysis to estimate acetone concentrations in the breath can be used.
Abstract:
Disclosed are methods for improving performance of fuel cells employing reformate fuels. The disclosed methods include employing a magnetically modified fuel cell and contacting the fuel cell anode with a reformate fuel stream that contains an amount of oxygen effective to increase carbon monoxide tolerance of the fuel cell.
Abstract:
The present invention is directed to methods for making magnetically modified electrodes and electrodes made according to the method. Such electrode are useful as electrodes in batteries, such as Ni-MH batteries, Ni—Cd batteries, Ni—Zn batteries and Ni—Fe batteries.
Abstract:
A method of diagnosing the health of an individual by collecting a breath sample from the individual and measuring the amount of each of a plurality of analytes in the sample. The amount of each analytes is measured by fitting a time response curve of a sample-evaluation fuel cell in which the fuel cell sample electrode is contacted with the sample with the analysis based on a function of standard time response curves for an equivalent fuel cell configuration obtained separately for each of the analytes on a fuel cell with equivalent construction as sample-evaluation fuel cell. Each of the plurality of analytes is generally indicative of an aspect of the individual's health. Suitable analytes include, for example, inorganic compounds as well as compositions that exhibit negative reduction reactions at least for a portion of the time response curve. In particular, acetone exhibits a negative potential/current peak when it is an analyte in a fuel cell in an sample electrode with a counter electrode exposed to oxygen, which may or may not be introduced in the form of air. Various forms of analysis to estimate acetone concentrations in the breath can be used.
Abstract:
The present invention is directed to methods for making magnetically modified electrodes and electrodes made according to the method. Such electrodes are useful as electrodes in batteries, such as Ni-MH batteries, Ni—Cd batteries, Ni—Zn batteries and Ni—Fe batteries.
Abstract:
Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and batteries and effect transport and separation of different chemical species. Devices utilizing the composites include an electrode and improved fuel cells and batteries. Some composites, disposed on the surface of electrodes, prevent passivation of those electrodes and enable direct reformation of liquid fuels. Methods involving these composites provide distinct ways for these composites to be utilized.
Abstract:
Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and batteries and effect transport and separation of different chemical species. Devices utilizing the composites include an electrode and improved fuel cells and batteries. Some composites, disposed on the surface of electrodes, prevent passivation of those electrodes and enable direct reformation of liquid fuels. Methods involving these composites provide distinct ways for these composites to be utilized.
Abstract:
Magnetic composites exhibit distinct flux properties due to gradient interfaces. Such composites can be used, for example, to improve fuel cells and batteries and to effect transport and separation of different chemical species, such as transition metal species (lanthanides and actinides). A variety of devices can be made utilizing the composites, including a separator, an electrode for channeling flux of magnetic species, an electrode for effecting electrolysis of magnetic species, a system for channeling electrolyte species, a system for separating particles with different magnetic susceptibilities, as well as improved fuel cells, batteries, and oxygen concentrators. Various magnetic composites can be used, for example, to make a separator for distinguishing between two chemical species, to form a flux switch to regulate the flow of a chemical species, to control chemical species transport and distribution, to produce rechargeable batteries having longer secondary cycle life and improved output power, and to enable the production of ambient pressure fuel cells having enhanced performance and reduced weight.
Abstract:
Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and batteries and effect transport and separation of different chemical species. Devices utilizing the composites include an electrode and improved fuel cells, batteries. Some composites, disposed on the surface of electrodes, prevent passivation of those electrodes and enable direct reformation of liquid fuels. Methods involving these composites provide distinct ways for these composites to be utilized.