Abstract:
A method for coating a surface with a magnetic composite material exhibiting distinct flux properties due to gradient interfaces within the composite. Surfaces coated with such a composite can be used to improve fuel cells and to effect improved transport and separation of different species of materials. A wide variety of devices can incorporate such composite-coated surfaces, including separators, fuel cells, electrochemical cells, and electrodes for channeling flux of, or for effecting electrolysis of, magnetic species.
Abstract:
Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and batteries and effect transport and separation of different species of materials, for example, transition metal species such as lanthanides and actinides. A variety of devices can be made utilizing the composites including a separator, an electrode for channeling flux of magnetic species, an electrode for effecting electrolysis of magnetic species, a system for channeling electrolyte species, a system for separating particles with different magnetic susceptibilities, improved fuel cells, batteries, and oxygen concentrators. Some composites can be used to make a separator for distinguishing between two species of materials and a flux switch to regulate the flow of a chemical species. Some composites can control chemical species transport and distribution. Other composites enable ambient pressure fuel cells having enhanced performance and reduced weight to be produced. Still other composites enable rechargeable batteries to be made that have longer secondary cycle life and improved output power. Methods involving these composites provide distinct ways for these composites to be utilized.
Abstract:
Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and effect transport and separation of different species of materials. A variety of devices can be made utilizing the composites including a separator, a cell, an electrode for channeling flux of magnetic species, an electrode for effecting electrolysis of magnetic species, a system for channeling electrolyte species, a system for separating particles with different magnetic susceptibilities. Some composites can be used to make a dual sensor for distinguishing between two species of materials and a flux switch to regulate the flow of a redox species and a flux switch to regulate the flow of a chemical species. Some composites can control chemical species transport and distribution.
Abstract:
Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and batteries and effect transport and separation of different species of materials, for example, transition metal species such as lanthanides and actinides. A variety of devices can be made utilizing the composites including a separator, an electrode for channeling flux of magnetic species, an electrode for effecting electrolysis of magnetic species, a system for channeling electrolyte species, a system for separating particles with different magnetic susceptibilities, improved fuel cells, batteries, and oxygen concentrators. Some composites can be used to make a separator for distinguishing between two species of materials and a flux switch to regulate the flow of a chemical species. Some composites can control chemical species transport and distribution. Other composites enable ambient pressure fuel cells having enhanced performance and reduced weight to be produced. Still other composites enable rechargeable batteries to be made that have longer secondary cycle life and improved output power. Methods involving these composites provide distinct ways for these composites to be utilized.
Abstract:
Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and effect transport and separation of different species of materials. A variety of devices can be made utilizing the composites including a separator, a cell, an electrode for channeling flux of magnetic species, an electrode for effecting electrolysis of magnetic species, a system for channeling electrolyte species, a system for separating particles with different magnetic susceptibilities. Some composites can be used to make a dual sensor for distinguishing between two species of materials and a flux switch to regulate the flow of a redox species and a flux switch to regulate the flow of a chemical species. Some composites can control chemical species transport and distribution.
Abstract:
A method for coating a surface with a magnetic composite material exhibiting distinct flux properties due to gradient interfaces within the composite. Surfaces coated with such a composite can be used to improve fuel cells and to effect improved transport and separation of different species of materials. A wide variety of devices can incorporate such composite-coated surfaces, including separators, fuel cells, electrochemical cells, and electrodes for channeling flux of, or for effecting electrolysis of, magnetic species.
Abstract:
Materials and methods for making and using magnetically enhanced composite materials are provided. Surfaces coated with such composites can be used to improve fuel cells, material separators, and other applications. A variety of devices can incorporate such composites, including fuel cells, separators, batteries, and electrodes that effect electrolysis of magnetic species.
Abstract:
Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and batteries and effect transport and separation of different species of materials, for example, transition metal species such as lanthanides and actinides. A variety of devices can be made utilizing the composites including a separator, an electrode for channeling flux of magnetic species, an electrode for effecting electrolysis of magnetic species, a system for channeling electrolyte species, a system for separating particles with different magnetic susceptibilities, improved fuel cells, batteries, and oxygen concentrators. Some composites can be used to make a separator for distinguishing between two species of materials and a flux switch to regulate the flow of a chemical species. Some composites can control chemical species transport and distribution. Other composites enable ambient pressure fuel cells having enhanced performance and reduced weight to be produced. Still other composites enable rechargeable batteries to be made that have longer secondary cycle life and improved output power. Methods involving these composites provide distinct ways for these composites to be utilized.
Abstract:
Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and batteries and effect transport and separation of different chemical species. Devices utilizing the composites include an electrode and improved fuel cells and batteries. Some composites, disposed on the surface of electrodes, prevent passivation of those electrodes and enable direct reformation of liquid fuels. Methods involving these composites provide distinct ways for these composites to be utilized.
Abstract:
Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and batteries and effect transport and separation of different chemical species. Devices utilizing the composites include an electrode and improved fuel cells and batteries. Some composites, disposed on the surface of electrodes, prevent passivation of those electrodes and enable direct reformation of liquid fuels. Methods involving these composites provide distinct ways for these composites to be utilized.