摘要:
A membrane for an electroacoustic transducer is disclosed having a first area, a second area, which is arranged for translatory movement in relation to said first area, and a third area, which connects said first area and said second area, wherein local, planar spring constants along a closed line within said third area encompassing said second area, are determined in such a way that local, translatory spring constants along said line in a direction of said translatory movement are substantially constant or exclusively have substantially flat, mutual changes.
摘要:
An electro-acoustic transducer (1) is disclosed, comprising a substrate (2) that comprises conducting paths (3), a cover (4) attached to said substrate (2) thus forming an inner chamber (A) and a space (B) outside said chamber (A), wherein said cover (4) comprises one or more ports (5). A MEMS sensor (6) of said transducer (1) has at least one hole (7) extending from a first side (C) to a second side (D). A membrane (8) is arranged in said hole (7) transverse to the hole axis (E) thus forming a first hole space (a) and a second hole space (b). The sensor (6) furthermore has electrical connectors (9) designed to carry electrical signals representing sound acting on said membrane (8), which connectors (9) are connected to said conducting paths (3). According to the invention, said MEMS sensor (6) is arranged inside said chamber (A) in such a way that said second hole space (b) is connected to said outside space (B) via said port or ports (5) and said first hole space (a) is connected to said inner chamber (A).
摘要:
A semiconductor diode has an anode, a cathode and a semiconductor volume provided between anode and cathode. A plurality of semiconductor zones are formed in the semiconductor volume, which semiconductor zones are inversely doped with respect to their immediate surroundings, spaced apart from one another and provided in the vicinity of the cathode. The semiconductor zones are spaced apart from the cathode.
摘要:
A membrane (2) for a microphone (1) is disclosed which comprises a first portion (A1), a second portion (A2), and elements (E1 . . . E4, E1′ . . . E4′), which connect said first (A1) and said second portion (A2). The second portion (A2) is arranged for a movement in relation to said first portion (A1) around an idle position, which movement includes at least a translatory component in a direction of movement (dm) normal to said membrane (2). The elements (E1 . . . E4, E1′ . . . E4′) are provided for definition of a spring constant for said movement around said idle position and are arranged substantially along the outer border of said second portion (A2).
摘要翻译:公开了一种用于麦克风(1)的膜(2),其包括第一部分(A 1),第二部分(A 2)和元件(E 1 ... E 4,E 1'... E 4 '),其连接所述第一(A 1)和所述第二部分(A 2)。 第二部分(A 2)布置成围绕怠速位置相对于所述第一部分(A 1)移动,该移动包括至少垂直于所述膜(2)的移动方向(dm)的平移部件, 。 元件(E 1 ... E 4,E 1'... E 4')用于定义围绕所述怠速位置的所述运动的弹簧常数,并且基本上沿着所述第二部分(A 2)。
摘要:
A device and method for testing seal tightness of a fuel tank system of a motor vehicle, wherein excess pressure is built up in the fuel tank system by an electrically operated pump and electric current consumption of the pump is compared to reference values in order to determine whether the seal tightness of the fuel tank system is sufficient, and wherein the fuel tank system includes a filler neck with a locking fuel tank cap. A control line is connected in parallel to the power supply line of the pump, the control line being guided across an electric tank cap switch, which assumes a different switch state when the filler neck is closed properly than when it is not closed properly. In at least one of these lines, an electric resistor is installed, which allows a determination of the switch state of the tank cap switch.
摘要:
A method for producing a buried n-doped semiconductor zone in a semiconductor body. In one embodiment, the method includes producing an oxygen concentration at least in the region to be doped in the semiconductor body. The semiconductor body is irradiated via one side with nondoping particles for producing defects in the region to be doped. A thermal process is carried out. The invention additionally relates to a semiconductor component with a field stop zone.
摘要:
An electronic circuit (10) for controlling a capacitive pressure sensor (1), which capacitive pressure sensor (1) comprises a plate electrode capacitor (C) with a capacity that varies in dependence on pressure changes exerted on a deflectable diaphragm (2) forming one plate electrode of the capacitor (C), wherein the electronic circuit (10) comprises a DC voltage source (12) being adapted to generate a DC bias-voltage (UDC) to be applied across the electrodes of the capacitor (C), an AC voltage source (13) being adapted to generate an AC voltage signal (UAC) to be applied across the electrodes of the capacitor (C) and a controller (18) being adapted to receive an output signal (OUT) of the capacitor (C) and to control the DC voltage source (12) such that the DC bias-voltage (UDC) applied to the capacitor (C) adopts a value that maintains the capacity of the capacitor (C) at a desired value.
摘要:
A bipolar semiconductor component, in particular a diode, comprising an anode structure which controls its emitter efficiency in a manner dependent on the current density in such a way that the emitter efficiency is low at small current densities and sufficiently high at large current densities, and an optional cathode structure, which can inject additional holes during commutation, and production methods therefor.
摘要:
A compound membrane (100) for an acoustic device (200), the compound membrane (100) comprising a first layer (101) and a second layer (102), wherein a value of Young's modulus of the second layer (102) does not vary more than essentially 30% in a temperature range between essentially −20° C. and essentially +85° C.
摘要:
A MEMS transducer (10) for an audio device comprises a substrate (12), a membrane (14) attached to the substrate (12), and a back-electrode (18) attached to the substrate (12), wherein a resonant frequency of the back-electrode (18) is matched to a resonant frequency of the membrane (14). Further, a method of manufacturing a MEMS transducer (19) for an audio device comprises attaching a membrane to a substrate (12), attaching a back-electrode (18) to the substrate (12), matching a resonant frequency of the back-electrode (18) to a resonant frequency of the membrane (14).