摘要:
A bipolar semiconductor component, in particular a diode, comprising an anode structure which controls its emitter efficiency in a manner dependent on the current density in such a way that the emitter efficiency is low at small current densities and sufficiently high at large current densities, and an optional cathode structure, which can inject additional holes during commutation, and production methods therefor.
摘要:
A bipolar semiconductor component, in particular a diode, comprising an anode structure which controls its emitter efficiency in a manner dependent on the current density in such a way that the emitter efficiency is low at small current densities and sufficiently high at large current densities, and an optional cathode structure, which can inject additional holes during commutation, and production methods therefor.
摘要:
A method for producing a buried n-doped semiconductor zone in a semiconductor body. In one embodiment, the method includes producing an oxygen concentration at least in the region to be doped in the semiconductor body. The semiconductor body is irradiated via one side with nondoping particles for producing defects in the region to be doped. A thermal process is carried out. The invention additionally relates to a semiconductor component with a field stop zone.
摘要:
A method for producing a buried n-doped semiconductor zone in a semiconductor body. In one embodiment, the method includes producing an oxygen concentration at least in the region to be doped in the semiconductor body. The semiconductor body is irradiated via one side with nondoping particles for producing defects in the region to be doped. A thermal process is carried out. The invention additionally relates to a semiconductor component with a field stop zone.
摘要:
A method for producing a buried n-doped semiconductor zone in a semiconductor body. In one embodiment, the method includes producing an oxygen concentration at least in the region to be doped in the semiconductor body. The semiconductor body is irradiated via one side with nondoping particles for producing defects in the region to be doped. A thermal process is carried out. The invention additionally relates to a semiconductor component with a field stop zone.
摘要:
A method for producing a buried n-doped semiconductor zone in a semiconductor body. In one embodiment, the method includes producing an oxygen concentration at least in the region to be doped in the semiconductor body. The semiconductor body is irradiated via one side with nondoping particles for producing defects in the region to be doped. A thermal process is carried out. The invention additionally relates to a semiconductor component with a field stop zone.
摘要:
A semiconductor diode (1, 1′) has an anode (2), a cathode (3) and a semiconductor volume (7) provided between anode (2) and cathode (3). A plurality of semiconductor zones (81 to 84) are formed in the semiconductor volume (7), which semiconductor zones are inversely doped with respect to their immediate surroundings, spaced apart from one another and provided in the vicinity of the cathode (3). The semiconductor zones are spaced apart from the cathode (3).
摘要:
One aspect is a semiconductor component including a terminal zone; a drift zone of a first conduction type, which is doped more weakly than the terminal zone; a component junction between the drift zone and a further component zone; and a charge carrier compensation zone of the first conduction type, which is arranged between the drift zone and the terminal zone and whose doping concentration is lower than that of the terminal zone, and whose doping concentration increases at least in sections in the direction of the terminal zone from a minimum doping concentration to a maximum doping concentration, the minimum doping concentration being more than 1016 cm−3.
摘要:
The invention relates to a semiconductor component comprising a buried temporarily n-doped area (9), which is effective only in the event of turn-off from the conducting to the blocking state of the semiconductor component and prevents chopping of the tail current in order thus to improve the turn-off softness. Said temporarily effective area is created by implantation of K centers (10).
摘要:
A semiconductor device in the form of an IGBT has a front side contact, a rear side contact, and a semiconductor volume disposed between the front side contact and the rear side contact. The semiconductor volume includes a field stop layer for spatially delimiting an electric field that can be formed in the semiconductor volume. The semiconductor volume further includes a plurality of semiconductor zones, the plurality of semiconductor zones spaced apart from each other and each inversely doped with respect to adjacent areas. The plurality of semiconductor zones are located within the field stop layer.