摘要:
An apparatus and method for testing large area substrates is described. The large area substrates include patterns of displays and contact points electrically coupled to the displays. The apparatus includes a prober assembly that is movable relative to the large area substrate and may be configured to test various patterns of displays and contact points. The prober assembly is also configured to test fractional sections of the large area substrate. The apparatus also includes a test chamber configured to store at least two prober assemblies within an interior volume.
摘要:
The invention relates to methods for positioning of a substrate 140 and contacting of the test object 301 for testing with a test apparatus with an optical axis and corresponding devices. Thereby, the substrate is put on the holder 130. The substrate is positioned relative to the optical axis. A contact unit 150 is also positioned relative to the optical axis, whereby the contact unit is positioned independent of the positioning activity of the substrate. Thereby, a flexible contacting of test objects on the substrate can be realized.
摘要:
The invention relates to methods for positioning of a substrate and contacting of the test object for testing with a test apparatus with an optical axis and corresponding devices. Thereby, the substrate is put on the holder. The substrate is positioned relative to the optical axis. A contact unit is also positioned relative to the optical axis, whereby the contact unit is positioned independent of the positioning activity of the substrate. Thereby, a flexible contacting of test objects on the substrate can be realized.
摘要:
For testing an interconnect network for shorts and interruptions, a point of the network to be tested is charged with a particle beam. Subsequently, a potential at least one further contact point is read with the same particle beam and an unaltered primary energy. An identification of potential occurs by documenting the secondary electrons triggered at the contact points. In order to avoid a disturbing change of potential during the measuring phase, the measuring time is only a fraction of the time for charging the network.
摘要:
An apparatus for testing of a plurality of electronic devices on a flexible substrate is described. The apparatus includes at least two rollers (110) configured for guiding the flexible substrate (10) into a testing area along transport direction, at least one prober (122) configured for electrically contacting one or more of the electronic devices, at least one probing support (124) configured for supporting a portion of the flexible substrate during electrical contact with the at least one prober, and a test device for functional testing of one or more of the electronic devices.
摘要:
A method is provided for fastening an airbag to a motor vehicle, that includes, but is not limited to the steps of fastening an airbag, which can be filled with a gas and which has a fastening tab, to a fastening device which comprises a plate and a clip device fastened to the plate and the plate comprises a first plate section with a first opening having a screw thread and a second plate section, and the clip device is fastened on the first plate section, and the airbag is fastened to the fastening device by bending the second plate section in such a manner that the first plate section and the second plate section at least partially enclose the fastening tab on both sides. A fastening device is also provided for an airbag, an airbag, and a motor vehicle.
摘要:
An apparatus and method for testing large area substrates is described. The large area substrates include patterns of displays and contact points electrically coupled to the displays. The apparatus includes a prober assembly that is movable relative to the large area substrate and may be configured to test various patterns of displays and contact points. The prober assembly is also configured to test fractional sections of the large area substrate. The apparatus also includes a test chamber configured to store at least two prober assemblies within an interior volume.
摘要:
A method and system for testing one or more large substrates are provided. In one or more embodiments, the system includes a testing chamber having a substrate table disposed therein. The substrate table is adapted to move a substrate within the testing chamber in various directions. More particularly, the substrate table includes a first stage movable in a first direction, and a second stage movable in a second direction, wherein each of the stages moves in an X-direction, Y-direction or both X and Y directions. The system further includes a load lock chamber at least partially disposed below the testing chamber, and a transfer chamber coupled to the load lock chamber and the testing chamber. In one or more embodiments, the transfer chamber includes a robot disposed therein which is adapted to transfer substrates between the load lock chamber and the testing chamber.
摘要:
The invention relates to a drive electronics for driving a display with a matrix 101 of picture elements. The drive circuit 102x and 102y for generating signals for driving the pixels via control lines 103 is provided with signals at the input terminals 110 via contact areas 104. In addition to the contact areas used for the generation of arbitrary pictures, there exist contact areas 105 used within the framework of a testing method. These contact areas for the testing method are also connected with the input terminals 110 of the drive circuit and are used for generating a test pattern.
摘要:
Method for particle beam testing of substrates for liquid crystal displays (LCD). This invention is directed to methods wherein, given a substrate (SUB1) for a liquid crystal display, either potentials or, respectively, currents are set in defined fashion with a particle beam (S1, S2 and S4) and/or potentials are measured by detecting secondary electrons (S5) at different switch statuses of the switch elements (T) of the substrate (SUB1). The geometrical integrity and the electrical functionability of the substrate (SUB1) are thereby tested, even though, for example, a supplementary plane electrode is not present for forming a capacitor. An important advantage of the method is that faulty substrates can be repaired or can be segregated even before further-processing and, thus, costs can be reduced.