Abstract:
Methods and systems for detecting defects on a wafer using defect-specific and multi-channel information are provided. One method includes acquiring information for a target on a wafer. The target includes a pattern of interest (POI) formed on the wafer and a known defect of interest (DOI) occurring proximate to or in the POI. The method also includes detecting the known DOI in target candidates by identifying potential DOI locations based on images of the target candidates acquired by a first channel of an inspection system and applying one or more detection parameters to images of the potential DOI locations acquired by a second channel of the inspection system. Therefore, the image(s) used for locating potential DOI locations and the image(s) used for detecting defects can be different.
Abstract:
A system, method, and non-transitory computer readable medium are provided for tuning sensitivities of, and determining a process window for, a modulated wafer. The sensitivities for dies of the modulated wafer are tuned dynamically based on a single set of parameters. Further, the process window is determined for the modulated wafer from prior determined parameter-specific nominal process windows.
Abstract:
A system, method, and non-transitory computer readable medium are provided for tuning sensitivities of, and determining a process window for, a modulated wafer. The sensitivities for dies of the modulated wafer are tuned dynamically based on a single set of parameters. Further, the process window is determined for the modulated wafer from prior determined parameter-specific nominal process windows.
Abstract:
A system, method, and non-transitory computer readable medium are provided for tuning sensitivities of, and determining a process window for, a modulated wafer. The sensitivities for dies of the modulated wafer are tuned dynamically based on a single set of parameters. Further, the process window is determined for the modulated wafer from prior determined parameter-specific nominal process windows.
Abstract:
Systems and methods for detecting defects on a wafer are provided. One method includes generating test image(s) for at least a portion of an array region in die(s) on a wafer from frame image(s) generated by scanning the wafer with an inspection system. The method also includes generating a reference image for cell(s) in the array region from frame images generated by the scanning of the wafer. In addition, the method includes determining difference image(s) for at least one cell in the at least the portion of the array region in the die(s) by subtracting the reference image from portion(s) of the test image(s) corresponding to the at least one cell. The method further includes detecting defects on the wafer in the at least one cell based on the difference image(s).
Abstract:
Systems and methods for detecting defects on a wafer are provided. One method includes generating test image(s) for at least a portion of an array region in die(s) on a wafer from frame image(s) generated by scanning the wafer with an inspection system. The method also includes generating a reference image for cell(s) in the array region from frame images generated by the scanning of the wafer. In addition, the method includes determining difference image(s) for at least one cell in the at least the portion of the array region in the die(s) by subtracting the reference image from portion(s) of the test image(s) corresponding to the at least one cell. The method further includes detecting defects on the wafer in the at least one cell based on the difference image(s).
Abstract:
Methods and systems for detecting defects on a wafer using defect-specific and multi-channel information are provided. One method includes acquiring information for a target on a wafer. The target includes a pattern of interest (POI) formed on the wafer and a known defect of interest (DOI) occurring proximate to or in the POI. The method also includes detecting the known DOI in target candidates by identifying potential DOI locations based on images of the target candidates acquired by a first channel of an inspection system and applying one or more detection parameters to images of the potential DOI locations acquired by a second channel of the inspection system. Therefore, the image(s) used for locating potential DOI locations and the image(s) used for detecting defects can be different.
Abstract:
Systems and methods for discovering defects on a wafer are provided. One method includes detecting defects on a wafer by applying a threshold to output generated by a detector in a first scan of the wafer and determining values for features of the detected defects. The method also includes automatically ranking the features, identifying feature cut-lines to group the defect into bins, and, for each of the bins, determining one or more parameters that if applied to the values for the features of the defects in each of the bins will result in a predetermined number of the defects in each of the bins. The method also includes applying the one or more determined parameters to the output generated by the detector in a second scan of the wafer to generate a defect population that has a predetermined defect count and is diversified in the values for the features.
Abstract:
Systems and methods for detecting defects on a wafer are provided. One method includes generating test image(s) for at least a portion of an array region in die(s) on a wafer from frame image(s) generated by scanning the wafer with an inspection system.The method also includes generating a reference image for cell(s) in the array region from frame images generated by the scanning of the wafer. In addition, the method includes determining difference image(s) for at least one cell in the at least the portion of the array region in the die(s) by subtracting the reference image from portion(s) of the test image(s) corresponding to the at least one cell. The method further includes detecting defects on the wafer in the at least one cell based on the difference image(s).
Abstract:
Methods and systems for detecting defects on a wafer using defect-specific and multi-channel information are provided. One method includes acquiring information for a target on a wafer. The target includes a pattern of interest (POI) formed on the wafer and a known defect of interest (DOI) occurring proximate to or in the POI. The method also includes detecting the known DOI in target candidates by identifying potential DOI locations based on images of the target candidates acquired by a first channel of an inspection system and applying one or more detection parameters to images of the potential DOI locations acquired by a second channel of the inspection system. Therefore, the image(s) used for locating potential DOI locations and the image(s) used for detecting defects can be different.