摘要:
The fabrication of an optical wiring board is performed in the following manner: A core member 13 for a mirror 22 is pattern-formed on a clad layer 11, and simultaneously, using the core member 13, each alignment mark pattern 14 is formed at any position on the clad layer 11. Further, with positioning in reference to each alignment mark 14, the core pattern 13 is subjected to physical cutting to form a bevel part and a concave part 23. Then, a metallic reflective film 18 is coated on the surface of the bevel part. Thereafter, with positioning in reference to each alignment mark 14, an optical wiring core pattern 20 is formed on the clad layer 11 adjacently to the mirror 22.
摘要:
The optical element array and an optical waveguide array are optically connected on the substrate. The optical waveguide array includes optical waveguide channels which are the outermost optical waveguide channels on both sides of optical waveguide array channels and each of which is provided with a mirror structure for light redirection. With the optical element array driven by a bias applied thereto, the optical waveguide array is brought near the optical element array. The optical axes of the optical waveguide array channels and the optical element array are aligned while monitoring optical signals outputted from the outermost optical waveguide channels on both sides of the optical waveguide array channels via the mirror structures for light redirection. The optical waveguide array is fixed to the substrate in such a position that the optical signals have a desired output value.
摘要:
The present invention provides a method for high precision alignment of a surface emitting laser and a lens in an optical module in which optical coupling between a surface emitting laser and other optical devices such as an optical fiber is realized via lenses, and a structure for providing the method. A lens member 101, in which the lenses 105 are arrayed at a depth t1 from a reference plane 102 and an alignment mark is provided at a depth t2 (t1
摘要:
An avalanche photodiode includes at least one crystal layer having a larger band-gap than that of an absorption layer formed by a composition or material different from that of the absorption layer formed on a junction interface between a compound semiconductor absorbing an optical signal and an Si multiplication layer, and the crystal layer may be intentionally doped with n or p type impurities to cancel electrical influences of the impurities containing oxides present on the junction interface of compound semiconductor and surface of Si.
摘要:
An ultrahigh speed, high sensitivity photodetector, optical module and/or optical transmission device made by reducing the size of a surface illuminated type photodetector to decrease capacitance C. The effective detecting area on a side of the substrate that is opposite to a light incidence side of the substrate in a surface illuminated type photodetector and that is reached by the incident light passing through the semiconductor includes a plurality of ohmic contact areas and a reflector. The reflector may be a laminate comprised of two films in contact with the semiconductor including a transparent film (lower) and a metal film (upper). The size of the ohmic contacts may be small when compared to the wavelength of light incident on the surface of the photodetector. The photodetector may be used in ultrahigh speed, high sensitivity optical modules, semiconductor photo receivers and optical transmission devices with increased transmission capacities.
摘要:
The fabrication of an optical wiring board is performed in the following manner: A core member 13 for a mirror 22 is pattern-formed on a clad layer 11, and simultaneously, using the core member 13, each alignment mark pattern 14 is formed at any position on the clad layer 11. Further, with positioning in reference to each alignment mark 14, the core pattern 13 is subjected to physical cutting to form a bevel part and a concave part 23. Then, a metallic reflective film 18 is coated on the surface of the bevel part. Thereafter, with positioning in reference to each alignment mark 14, an optical wiring core pattern 20 is formed on the clad layer 11 adjacently to the mirror 22.
摘要:
There is provided an optical module including photonic devices set in array, prepared by integrating a plurality of photonic devices with each other in such a state as arranged in such a array as to enable light beams to output in the common direction. The plural photonic devices each include a first electrode, and a second electrode, arranged in the same direction as the plural photonic devices are arranged, and the first and second electrodes of the photonic devices adjacent to each other are disposed such that respective electrode layouts are a mirror image of each other.
摘要:
A photoelectric integrated circuit device, in which photonic devices provided on the same substrate as the LSI are densely arranged along the four sides of the LSI, and characteristic degradation of the laser diode or photo detector due to heat generation can be prevented, furthermore optical wiring is easily performed on the board. A quadrilateral package substrate 11; an LSI package 13 mounted on the package substrate 11; photonic devices 12 mounted along two or more sides of the LSI package 13; first photonic devices electrically connected to I/O terminals disposed on one side of the LSI package 13; second photonic devices electrically connected to I/O terminals disposed on a different side of the LSI package 13; first optical waveguides for connecting between the optical signal I/O terminals of the first photonic devices and an external component or device; and second optical waveguides for connecting between the optical I/O terminals of the second photonic devices and an external component or device; wherein the first and second optical waveguides are terminated on the same side edge of the package substrate 11.
摘要:
An avalanche photodiode includes at least one crystal layer having a larger band-gap than that of an absorption layer formed by a composition or material different from that of the absorption layer formed on a junction interface between a compound semiconductor absorbing an optical signal and an Si multiplication layer, and the crystal layer may be intentionally doped with n or p type impurities to cancel electrical influences of the impurities containing oxides present on the junction interface of compound semiconductor and surface of Si.
摘要:
The present invention provides a method for high precision alignment of a surface emitting laser and a lens in an optical module in which optical coupling between a surface emitting laser and other optical devices such as an optical fiber is realized via lenses, and a structure for providing the method. A lens member 101, in which the lenses 105 are arrayed at a depth t1 from a reference plane 102 and an alignment mark is provided at a depth t2 (t1