Abstract:
A system for use in a vehicle with a brake pedal and a brake circuit. The system includes a master cylinder assembly configured to pressurize fluid therein in response to movement of the brake pedal, a sensor assembly configured to generate a pedal position signal indicative of position of the brake pedal, an electronic control unit configured to (i) generate a brake request signal in response to generation of the pedal position signal, and (ii) generate a selector control signal, and a selector valve assembly being moved from a first mode to a second mode in response to generation of the selector control signal, the master cylinder assembly is (i) isolated from fluid communication with the brake circuit when the selector valve assembly is positioned in the first mode, and (ii) in fluid communication with the brake circuit when the selector valve assembly is positioned in the second mode.
Abstract:
An image capture system is configured to automatically focus upon an object (113) electronically, without moving mechanical parts. In one embodiment, a focal length alteration device (104), examples of which include an electronically switchable mirror (3041,3042) or an interference layer (204), is disposed between a lens assembly (102) and a reflective surface (103). The focal length alteration device (104) is configured to alter the distance light travels from the lens assembly (102) to the image sensor (101). In another embodiment, a light redirection device (1003), such as a phase shifting mirror (703), is configured to alter phases of various polarizations of light. An image processing circuit (105) then resolves images into a single, focused, composite image (113).
Abstract:
An integrated mine detection system includes a ground penetrating metal detector and a ground penetrating radar detector. The integrated mine detection system includes an integrated search device housing a radio-wave transmitter of the radar detector and a coil of the metal detector. The radio-wave transmitter includes an antenna. The integrated search device includes a radio-wave receiver in the form of a pair of receiving antennas.
Abstract:
A system for use in a vehicle with a brake pedal and a brake circuit. The system includes a master cylinder assembly configured to pressurize fluid therein in response to movement of the brake pedal, a sensor assembly configured to generate a pedal position signal indicative of position of the brake pedal, an electronic control unit configured to (i) generate a brake request signal in response to generation of the pedal position signal, and (ii) generate a selector control signal, and a selector valve assembly being moved from a first mode to a second mode in response to generation of the selector control signal, the master cylinder assembly is (i) isolated from fluid communication with the brake circuit when the selector valve assembly is positioned in the first mode, and (ii) in fluid communication with the brake circuit when the selector valve assembly is positioned in the second mode.
Abstract:
An arrangement for measuring air flow includes a source of measurement values and a processing unit. The source of measurement values is operable to generate measurement values representative of a difference in pressure from air obtained on a first side of an obstruction and air obtained on a second side of the obstruction. The processing unit is configured to, in one case, convert any negative measurement values of the measurement values to a less negative value. The processing unit is further configured to perform low pass filtering on the measurement values and convert the filtered measurement values to a flow value.
Abstract:
A contaminant detection machine (1) including a conveyor (3) which causes an object under inspection (79) to pass through a plane (48) of emitted x-ray radiation. The plane is generated by an x-ray tube (55) that emits a lateral beam, thereby permitting the distance (88) between the x-ray tube and the object under inspection to be reduced. A photo diode arch mounting assembly (104) is placed above the object under inspection and is mated to a collimator assembly (125) that also serves as the mounting bracket for the x-ray generation assembly (38), thereby preserving optical alignment between the photo diode detector array (28) and the emitted x-ray plane (48). The detector array (28) scans the object under inspection (79) so as to produce a continuous series of discrete lines, each line being analyzed by an image processing unit (116) to determine the presence or absence of a contaminant. The conveyor (3) passes over a pair of slider bed surfaces (155, 156) which are mounted in a hinged manner such that the leading edge (168) of one surface (156) is parallel to and spaced apart from the trailing edge (172) of the other surface (155), thereby creating a gap that is coplanar with the collimation slot (129) and the emitted x-ray plane (48). Each bed surface (155, 156) is rigidly constrained within open ended mounting brackets (159, 160, 161 and 162) yet can be removed by hand without the use of tools. Similarly, the conveyor (3) is supported by a roller assembly (182) that includes a tracking block (142) and pivot pin (143) which permits the roller assembly to be mounted to and removed from flip up mounts (151, 152) by hand and without the need of tools. Graphical user interfaces (249, 260, 261, 266, 275, 282 and 288) permit a user to operate the machine (1) by means of a liquid crystal display touch screen (20).
Abstract:
A Station Management Entity (SME) steers a directional antenna for a station to communicate with an Access Point (AP) in an 802.11 protocol system. The SME can steer the antenna before or after an 802.11 station has authenticated and associated with the Access Point. During a passive scan, the steering process cycles through the available antenna positions and monitors an AP beacon signal to determine a best position based on, for example, a Received Signal Strength Indication (RSSI). During an active scan where access probing is used, the steering process cycles through the antenna positions and monitors a probe response to determine the best antenna position. Additional scans may be performed based on a decision that the received signal level of the currently selected antenna position has dropped below a predetermined threshold.
Abstract:
A series of velocity encoded MR image frames are acquired. To increase the temporal resolution of the acquired image frames radial projections are acquired and each image frame is highly undersampled. The radial projections for each velocity encoding direction are interleaved throughout the scan and a composite phase image is reconstructed from these and used to reconstruct a velocity image for each image frame in a highly constrained backprojection method.