摘要:
A scanner comprises an electromagnetic wave source; and a detector positioned to measure emissions from the electromagnetic wave source, wherein the electromagnetic wave source comprises a first technology, and the electromagnetic wave source is interchangeable with a second electromagnetic wave source comprising a second technology and/or wherein the detector comprises a first technology, and the detector is interchangeable with a second detector comprising a second technology. Training the scanner to inspect for contaminants includes generating electromagnetic wave emissions at a plurality of combinations of parameters; moving a conveyor belt to expose product having a plurality of contaminants of different sizes to the emissions generated at more than one combination of parameters; recording attenuated emissions that pass through the product at more than one combination of parameters; and selecting a combination of parameters to use when inspecting for the contaminant.
摘要:
A method for X-raying products of a product stream in which products are conveyed in a conveyance direction before the X-raying in a number n lanes parallel to each other. Several adjacent products transverse to the conveyance direction are transferred as a group together into a radiation-protected X-ray room, and the products are rearranged for an X-ray process in the X-ray room such that the shadowing effects during the X-ray process are reduced.
摘要:
A nondestructive inspection device 1 comprises an X-ray indicator 20, a low-energy detector 32, a high-energy detector 42, a low-energy transmittance calculation unit 72, a high-energy transmittance calculation unit 74, a detection unit 76, and a correction unit 78. The calculation unit 72 calculates a value indicating the transmittance of transmission X-rays in a low energy range. The calculation unit 74 calculates a value indicating the transmittance of transmission X-rays in a high energy range. The detection unit 76 detects a positional deviation detail of the X-ray indicator 20 according to a ratio between the transmittances calculated by both of the calculation units 72, 74. When the positional deviation detail of the X-ray indicator 20 is detected by the detection unit 76, according to the positional deviation detail, the correction unit 78 corrects X-ray luminance data detected by the detectors 32, 42.
摘要:
A technique to correct deficiencies in x-ray images of cylindrical or spherical objects that are a consequence of the geometry of the sample is disclosed, for both normal imaging of stationary objects with film or digital detectors and linescan imaging of moving objects. The methods described involve the use of attenuators specifically shaped to equalize the x-ray absorption across the sample, thus correcting the variation in pixel intensity caused by the varying thickness of the sample.
摘要:
The invention relates to an inspection device for a production machine, in particular, a bottling plant 1 with a filling device 7 or a filling and sealing device 13, with a stream of products (5) consisting of one or more columns, wherein the inspection device is arranged in the production machine, advantageously in the bottling plant 1, directly after the filling device 7 or the filling and sealing device 13 or before a separating device 23, so that the products 5 are inspected before the separation 23 or packaging 25 of the products 5. Furthermore, the invention relates to an inspection method for a production machine, in particular, for a bottling plant 1, in which an inspection device consisting of a source 17 and a sensor 19 scans several products 5 perpendicular or diagonal to the product motion B.
摘要:
An X-ray detection device for detecting whether or not foreign matter is mixed in on the basis of the transmission amount of X-rays that have penetrated an examination subject article by applying X-rays, at a predetermined detection position to an examination subject article being conveyed in a pipe (7), wherein a test-piece table (17) capable of passing by the detection position at substantially the same speed as that of the examination subject article is installed in the vicinity of the pipe (7), with a test-piece (21) placed thereon. X-ray detection sensitivity can be detected without mixing the test-piece in the actual examination subject article.
摘要:
To provide a fluorescent X-ray analysis apparatus, whereby a peak-back ratio is improved by effectively exciting a focused element and a detection limit of the focused element is improved by decreasing a scattered X-ray to be a background. A sample housing has one or more wall surfaces made of a material through which an X-ray transmits and an X-ray source is arranged so that a primary X-ray is irradiated on the wall surface. In addition, the sample housing is arranged so that a wall surface different from a wall surface on which the primary X-ray is irradiated is opposed to an X-ray detector incident window. Further, the primary X-ray from the X-ray source is arranged so as to be able to irradiate the wall surface of the sample housing to which the X-ray detector incident window is opposed. The sample housing has a shape extending in response to extension of a viewing filed that a detection element in the X-ray detector is seen from the X-ray detector incident window. In addition, on the wall of the sample housing, a metal for secondarily exciting the focused element is arranged on an area other than an area through which the primary X-ray transmits and an area where the fluorescent X-ray from the focused element passes to the detector.
摘要:
A method for preparing a sample of organic material for laser induced breakdown spectroscopy (LIBS) may include obtaining granular organic material, forming a portion of the granular organic material into a sample pellet, and searing the organic material. The searing may include searing only an exposed end surface of the sample pellet on which LIBS analysis is to be performed. The method may include pressing the seared sample pellet to consolidate the material comprising the seared end surface.
摘要:
A nondestructive inspection device 1 comprises an X-ray indicator 20, a low-energy detector 32, a high-energy detector 42, a low-energy transmittance calculation unit 72, a high-energy transmittance calculation unit 74, a detection unit 76, and a correction unit 78. The calculation unit 72 calculates a value indicating the transmittance of transmission X-rays in a low energy range. The calculation unit 74 calculates a value indicating the transmittance of transmission X-rays in a high energy range. The detection unit 76 detects a positional deviation detail of the X-ray indicator 20 according to a ratio between the transmittances calculated by both of the calculation units 72, 74. When the positional deviation detail of the X-ray indicator 20 is detected by the detection unit 76, according to the positional deviation detail, the correction unit 78 corrects X-ray luminance data detected by the detectors 32, 42.
摘要:
A meat processing device comprises a meat processing unit and an external X-ray meat analyser provided with a housing formed with an inlet connectable with an outlet of the processing unit. The housing provides complete shielding of personnel from X-rays except towards the inlet and is movable relative to the processing unit to a first position for analysis at which the unit outlet is collocated with the inlet and at which the processing unit completes the shielding of personnel from X-rays towards the inlet.