Abstract:
A method for processing a video signal and a method for calibrating signal processing apparatuses are disclosed. The method for video signal process comprises the following steps. First, an analog video signal having a sync pulse is provided. Then, a peak level of the sync pulse is detected, and a signal transfer gain is determined based on the peak level of the sync pulse. Finally, the analog video signal is converted into a digital signal according to the signal transfer gain.
Abstract:
A cutting method by applying a particle beam of metallic glass onto a substrate to cut or partially cut the substrate with high production efficiency, low production cost and better environmental protection.
Abstract:
An apparatus and a method for frequency locking are provided. The apparatus includes a phase-locked loop (PLL), a local clock generator, a data buffer unit and a control unit. The PLL locks the phase and the frequency of a radio frequency signal to generate a recovery clock signal and received data. The data buffer unit writes the received data into an elastic buffer of the data buffer unit according to the frequency of the recovery clock signal, and reads the received data from the elastic buffer according to the frequency of a local clock signal generated by the local clock generator. The control unit obtains a write-in address and a read-out address in the elastic buffer, and sends a control signal to the local clock generator for adjusting the frequency of the local clock signal according to relationship between the write-in address and the read-out address.
Abstract:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides a processing for forming improved source/drain features in the semiconductor device. Semiconductor devices with the improved source/drain features may prevent or reduce defects and achieve high strain effect resulting from epi layers. In an embodiment, the source/drain features comprises a second portion surrounding a first portion, and a third portion between the second portion and the semiconductor substrate, wherein the second portion has a composition different from the first and third portions.
Abstract:
An electrical connector includes a housing member and a number of contacts attached to the housing member. The contacts include a number of first contacts and second contacts arranged side by side along a transverse direction, respectively. Each of the first and second contacts include a main portion, a contact portion and a bending portion extending from a lateral edge of the main portion. The bending portion has a narrow width in order to occupy small space of a rear wall of the housing member so that the rear wall of the housing member still has adequate area for mounting other components.
Abstract:
A light-emitting diode structure includes a base with a recessed portion, a light-emitting chip and a light-transmissive block. The light-emitting chip disposed in the recessed portion of the base and emits a light beam. The light-transmissive block disposed on the base covers the recessed portion and the light-emitting chip, so that the light beam emitted from the light-emitting chip is radiated outwardly via the light-transmissive block. The light-transmissive block is a flat-top multilateral cone including a bottom surface, a top surface, and several side surfaces connected to and located between the bottom surface and the top surface. A slot with a bottom portion is formed on the top surface of the light-transmissive block.
Abstract:
An active light emitting device disposed on a substrate is provided. The active light emitting device includes a scan line, a data line, a power line, a circuit unit, and a light emitting unit. The circuit unit is connected to the scan line, the data line, and the power line. The circuit unit at least includes an overlapping component which is at least partially overlapped with the power line. The light emitting unit is driven by the circuit unit. A light emitting region and a circuit region on the substrate are defined respectively by the light emitting unit and the circuit unit.
Abstract:
The present disclosure relates to a mobile device provided with a camera module that is detachably received in a side of the device body. Particularly, the camera module is hidden inside the device body when not in use and can be drawn out from the side of the device body when in use. Since the camera module is not affixed permanently to the device, the detachable camera module can be used in small confined areas with expanded photo-capturing scope and angle.
Abstract:
The present disclosure provides a method of fabricating that includes providing a semiconductor substrate; forming a gate structure on the substrate; performing an implantation process to form a doped region in the substrate; forming spacers on sidewalls of the gate structure; performing an first etching to form a recess in the substrate, where the first etching removes a portion of the doped region; performing a second etching to expand the recess in the substrate, where the second etching includes an etchant and a catalyst that enhances an etching rate at a remaining portion of the doped region; and filling the recess with a semiconductor material.
Abstract:
An optical device includes: a lock having a locking unit and an operation unit having at least a sensor; and a key configured to correspond to the lock. The key includes an unlocking unit having at least a light-guiding element for transmitting light between the operation unit and the unlocking unit. The operation unit is activated to unlock the locking unit after the sensor detects and recognizes the transmitted light. After encoding, the optical device of the present invention cannot be reproduced and the encoded light beam will not be intercepted and decoded easily so as to satisfy our security demands. Further, the structure of the optical device of the present invention does not decay easily. Therefore, the present invention has an excellent anti-theft effect and a reduced production cost.