Communication signal compensator
    32.
    发明授权

    公开(公告)号:US11025290B2

    公开(公告)日:2021-06-01

    申请号:US16312984

    申请日:2017-06-20

    Abstract: The present invention relates to a wireless charging device including a communication signal compensator, a communication signal compensator comprises a power detector configured to detect a magnitude of a communication signal received through each of the plurality of antennas, and a control unit configured to acquire a communication signal having the greatest signal magnitude as the detection result, select an antenna corresponding to the communication signal having the greatest signal magnitude among the plurality of antennas, and transmit, to the coupling antenna, a switch control signal for controlling the switch to be connected to the selected antenna.

    Wireless power transmitter and receiver

    公开(公告)号:US10923939B2

    公开(公告)日:2021-02-16

    申请号:US16325540

    申请日:2016-12-16

    Abstract: According to one embodiment of the present invention, a wireless power transmitter for transferring power to a wireless power receiver, the wireless power transmitter includes a coil assembly including a plurality of coils, a power conversion unit configured to convert an input direct current (DC) into an alternating current (AC) for driving the coil assembly, and a communication/control unit configured to communicate with the wireless power receiver and control an amount of power to be transferred to the wireless power receiver using the coil assembly, wherein the plurality of coils are arranged in first and second directions, wherein each of the plurality of coils has a substantially rectangular frame structure having a through hole at a center, and is arranged so that at least portion of the each coil overlaps, in a plane, with a neighboring coil in the first and second directions.

    Image display apparatus
    34.
    发明授权

    公开(公告)号:US10659718B2

    公开(公告)日:2020-05-19

    申请号:US16036245

    申请日:2018-07-16

    Abstract: An image display apparatus are disclosed. The image display apparatus includes a display including a first electrode and a second electrode, for wireless power reception, a signal processor disposed apart from the display, and including a third electrode and a fourth electrode, for wireless power transmission, and a first bridge electrode and a second bridge electrode, including one ends apart from the first electrode and the second electrode, facing the first electrode and the second electrode, and the other ends apart from the first bridge electrode and the second bridge electrode, facing the first bridge electrode and the second bridge electrode.

    METHOD FOR CONTROLLING MOBILE ROBOT AND MOBILE ROBOT THEREFOR

    公开(公告)号:US20190381852A1

    公开(公告)日:2019-12-19

    申请号:US16553705

    申请日:2019-08-28

    Abstract: Disclosed is a mobile robot including: at least three wheels; a sensing unit configured to measure a weight of the mobile robot applied to each of the three wheels; a support member connected to at least one of the at least three wheels; a length adjustment member connected to the support member so as to adjust a length of the support member; and a processor control the length adjustment member for effectively controlling a center of mass of a mobile robot. In addition, disclosed are a method implemented by the mobile robot to control a center of mass of the mobile robot, and a non-transitory computer readable storage medium in which a computer program for implementing the method for controlling the center of mass of the mobile robot.

    Wireless power transmitter and receiver for vehicle

    公开(公告)号:US11936204B2

    公开(公告)日:2024-03-19

    申请号:US18186627

    申请日:2023-03-20

    Abstract: A wireless power transmitter configured to transfer power to a wireless power receiver including primary coils comprising first and second bottom coils placed adjacent to each other in a line and each consisting of a single layer of 11 turns and a top coil stacked on the first and second bottom coils and consisting of a single layer of 12 turns; a shielding; and a full-bridge inverter, wherein the first and second bottom coils and the top coil have a substantially rectangular frame structure with a through hole in the center, wherein the top coil lies on a plane surface in the middle between the first and second bottom coils, wherein a distance from the center of the first and second bottom coils to the center of the top coil is set to a range of 21 mm to 25 mm, wherein the first and second bottom coils have a height of 48 mm to 50 mm and a width of 43 mm to 45 mm, and the through hole in the first and second bottom coils has a height of 25 mm to 27 mm and a width of 21 mm to 23 mm, wherein the top coil has a height of 45 mm to 47 mm and a width of 48.5 mm to 50.5 mm, and the through hole in the top coil has a height of 20 mm to 22 mm and a width of 24.5 mm to 26.5 mm, wherein the first and second bottom coils and the top coil have a thickness of 0.9 mm to 1.3 mm, wherein an amount of power which is transferred is controlled based on an input voltage of the full-bridge inverter, wherein the input voltage has a range of 1 V to 18 V, wherein an operating frequency to control the amount of the power is within a range of 140 kHz to 150 kHz, wherein an assembly of the primary coils and the shielding has a self-inductance value of 11.3 μH, wherein the full-bridge invertor drives a series capacitance, and wherein a value of the series capacitance is 139 nF.

    Method of flying unmanned aerial robot in unmanned aerial system and apparatus for supporting the same

    公开(公告)号:US11459101B2

    公开(公告)日:2022-10-04

    申请号:US16575050

    申请日:2019-09-18

    Abstract: A method of analyzing a propeller status of a wireless aerial robot can include measuring status information related to the propeller status by a sensor of a propeller; determining whether an operation of the propeller is abnormal based on the status information; transmitting the status information and operation information regarding whether an operation of the propeller is abnormal to a control unit using short range wireless communication; and analyzing, by the control unit, a flight status of the wireless aerial robot based on the status information and the operation information regarding whether the operation of the propeller is abnormal.

Patent Agency Ranking