摘要:
Previous methods for culturing human embryonic stem cells have required either fibroblast feeder cells or a medium which has been exposed to fibroblast feeder cells in order to maintain the stem cells in an undifferentiated state. It has now been found that if an antagonist of bone morphogenic protein is added to the medium in which the stem cells are cultured, together with fibroblast growth factor, the stem cells will remain undifferentiated indefinitely, even without feeder cells or conditioned medium.
摘要:
A purified preparation of primate embryonic stem cells is disclosed. This preparation is characterized by the following cell surface markers: SSEA-1 (−); SSEA-4 (+); TRA-1-60 (+); TRA-1-81 (+); and alkaline phosphatase (+). In a particularly advantageous embodiment, the cells of the preparation are human embryonic stem cells, have normal karyotypes, and continue to proliferate in an undifferentiated state after continuous culture for eleven months. The embryonic stem cell lines also retain the ability, throughout the culture, to form trophoblast and to differentiate into all tissues derived from all three embryonic germ layers (endoderm, mesoderm and ectoderm). A method for isolating a primate embryonic stem cell line is also disclosed.
摘要:
Previous methods for culturing human embryonic stem cells have required either fibroblast feeder cells or a medium which has been exposed to fibroblast feeder cells in order to maintain the stem cells in an undifferentiated state. It has now been found that if high levels of fibroblast growth factor, gamma amino butyric acid, pipecholic acid, lithium and transforming growth factor beta are added to the medium in which the stem cells are cultured, the stem cells will remain undifferentiated indefinitely through multiple passages, even without feeder cells or conditioned medium.
摘要:
A purified preparation of primate embryonic stem cells is disclosed. This preparation is characterized by the following cell surface markers: SSEA-1 (−); SSEA-4 (+); TRA-1-60 (+); TRA-1-81 (+); and alkaline phosphatase (+). In a particularly advantageous embodiment, the cells of the preparation are human embryonic stem cells, have normal karyotypes, and continue to proliferate in an undifferentiated state after continuous culture for eleven months. The embryonic stem cell lines also retain the ability, throughout the culture, to form trophoblast and to differentiate into all tissues derived from all three embryonic germ layers (endoderm, mesoderm and ectoderm). A method for isolating a primate embryonic stem cell line is also disclosed.
摘要:
The present invention relates to methods for reprogramming a somatic cell to pluripotency by administering into the somatic cell at least one or a plurality of potency-determining factors. The invention also relates to pluripotent cell populations obtained using a reprogramming method.
摘要:
A purified preparation of primate embryonic stem cells is disclosed. This preparation is characterized by the following cell surface markers: SSEA-1 (−); SSEA-4 (+); TRA-1-60 (+); TRA-1-81 (+); and alkaline phosphatase (+). In a particularly advantageous embodiment, the cells of the preparation are human embryonic stem cells, have normal karyotypes, and continue to proliferate in an undifferentiated state after continuous culture for eleven months. The embryonic stem cell lines also retain the ability, throughout the culture, to form trophoblast and to differentiate into all tissues derived from all three embryonic germ layers (endoderm, mesoderm and ectoderm). A method for isolating a primate embryonic stem cell line is also disclosed.
摘要:
The invention relates to methods for culturing human embryonic stem cells by culturing the stem cells in an environment essentially free of mammalian fetal serum and in a stem cell culture medium including amino acids, vitamins, salts, minerals, transferrin, insulin, albumin, and a fibroblast growth factor that is supplied from a source other than just a feeder layer the medium. Also disclosed are compositions capable of supporting the culture and proliferation of human embryonic stem cells without the need for feeder cells or for exposure of the medium to feeder cells.
摘要:
The invention relates to a method to induce primate embryonic stem cells to differentiate into a relatively homogenous population of mesendoderm cells by treatment with caspase-like inhibitors. Also described is a population of mesendoderm cells obtained therefrom. The embryonic stem cell derived mesendoderm cells have the general morphological and cell surface marker characteristics of mesendoderm cells.
摘要:
This invention relates to the culture of dendritic cells from human embryonic stem (ES) cells. Human ES cells are first cultured into hematopoietic cells by co-culture with stromal cells. The cells now differentiated into the hematopoietic lineage are then cultured with GM-CSF to create a culture of myeloid precursor cells. Culture of the myeloid precursor cells with the cytokines GM-CSF and IL-4 causes functional dendritic cells to be generated. The dendritic cells have a unique phenotype, as indicated by their combination of cell surface markers.
摘要:
Previous methods for culturing primate pluripotent stem cells have required either fibroblast feeder cells or a medium which was exposed to fibroblast feeder cells to maintain the stem cells in an undifferentiated state. It has now been found that high levels of fibroblast growth factor in a medium together with at least one of gamma aminobutyric acid, pipecolic acid, and lithium, enables pluripotent stem cells to remain undifferentiated indefinitely through multiple passages, even without feeder cells or conditioned medium. Without beta-mercaptoethanol, the medium improves cloning efficiency. Also, a matrix of human proteins can be used to culture the undifferentiated cells without exposing the cells to animal products. Further disclosed are new primate pluripotent cell lines made using the defined culture conditions, including the medium and the matrix. Such new cell lines will have never been exposed to animal cells, animal products, feeder cells or conditioned medium.