Abstract:
The present invention relates to metal oxide based memory devices and methods for manufacturing such devices; and more particularly to memory devices having data storage materials based on metal oxide compounds fabricated with a roughness tuning process including an ion bombardment step of a bottom electrode surface prior to formation of a memory element on the bottom electrode surface. Ion bombardment improves the flatness of the bottom electrode which is beneficial in achieving a more uniform electrical field during operation, which improves device reliability.
Abstract:
A memory structure including an insulating layer, a first electrode layer and a first barrier is provided. The insulating layer has a recess. The first electrode layer is formed in the recess and has a first top surface. The first barrier is formed between the insulating layer and the first electrode layer, and has a second top surface lower than the first top surface. The first top surface and the second top surface are lower than an opening of the recess.
Abstract:
Provided is an operation method applicable to a resistive memory cell including a transistor and a resistive memory element. The operation method includes: in a programming operation, generating a programming current flowing through the transistor and the resistive memory element so that a resistance state of the resistive memory element changes from a first resistance state into a second resistance state; and in an erase operation, generating an erase current from a well region of the transistor to the resistive memory element but keeping the erase current from flowing through the transistor, so that the resistance state of the resistive memory element changes from the second resistance state into the first resistance state.
Abstract:
A semiconductor structure, a resistive random access memory unit structure, and a manufacturing method of the semiconductor structure are provided. The semiconductor structure includes an insulating structure, a stop layer, a metal oxide layer, a resistance structure, and an electrode material layer. The insulating structure has a via, and the stop layer is formed in the via. The metal oxide layer is formed on the stop layer. The resistance structure is formed at a bottom of an outer wall of the metal oxide layer. The electrode material layer is formed on the metal oxide layer.
Abstract:
A memory device and a method for operating the same are provided. The memory device includes a plurality of resistive memory cells and a control circuitry electrically connected to the plurality of resistive memory cells. The control circuitry provides operation modes to operate the plurality of resistive memory cells. The operation modes include a first program operation and a refresh operation. The first program operation includes applying a first program bias voltage to a selected resistive memory cell of the plurality of resistive memory cells to establish a low-resistance state in the selected resistive memory cell. The first program operation establishes a first threshold voltage in the memory device. The refresh operation includes applying a refresh bias voltage to the selected resistive memory cell to refresh the selected resistive memory cell. An absolute value of the refresh bias voltage is greater than the first threshold voltage.
Abstract:
A hybrid in-memory search (IMS) content addressable memory (CAM) cell includes: a first IMS CAM cell; and a second IMS CAM cell, coupled to the first IMS CAM cell. The first IMS CAM cell and the second IMS CAM cell are of different types. When the hybrid IMS CAM cell stores a storage data, the first IMS CAM cell stores a first part of the storage data and the second IMS CAM cell stores the storage data or a second part of the storage data.
Abstract:
Metal oxide based memory devices and methods for manufacturing are described herein. A method for manufacturing a memory cell includes forming a bottom adhesion layer in a via formed in an insulating layer. Forming a bottom conductive plug in the bottom adhesion layer. Forming a top adhesion layer over the bottom adhesion layer and bottom conductive plug. Forming a top conductive plug in the top adhesion layer. Wherein the thickness of the bottom and top adhesion layers may be different from one another.
Abstract:
Disclosed is a memory device including plural bit lines, plural word lines and a control circuit. The bit lines are configured to receive pixel data of an image. Each word line includes plural factor units. The factor units of each word line are configured differently according to plural factors of a filter. When processing a first area of the image by the filter, the control circuit inputs the pixel data within the first area of the image to the bit lines, and enables one of the word lines for operation. When processing a second area of the image by the filter, the control circuit maintains the pixel data within the second area overlapping the first area on the bit lines, and inputs the pixel data within the second area which doesn't overlap the first area to the bit lines, and enables another one of the word lines for operation.
Abstract:
The present invention relates to metal oxide based memory devices and methods for manufacturing such devices, and more particularly to memory devices having data storage materials based on metal oxide compounds fabricated with a biased plasma oxidation process which improves the interface between the memory element and a top electrode for a more a uniform electrical field during operation, which improves device reliability.
Abstract:
A method for manufacturing a resistive memory device is disclosed and comprises following steps. Firstly, a bottom electrode is formed over a substrate. Next, an oxidation process is performed to the bottom electrode to form a metal oxide layer, wherein a hydrogen plasma and an oxygen plasma are provided during the oxidation process. Then, a top electrode is formed on the metal oxide layer.